LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cai, Jianxian; Hong, Li; Cheng, Lina; Yu, Ruihong (2016)
Publisher: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek
Journal: Tehnički vjesnik
Languages: Croatian
Types: 0038
Subjects: balanced control; Fuzzy Set; mapping rules; Skinner Operant Conditioning Mechanism, neizraziti skup; pravila preslikavanja; Skinner Operant Conditioning Mechanism; uravnoteženo upravljanje
Fuzzy Skinner Operant Conditioning Automaton (FSOCA) sastavljen je na temelju Operant Conditioning mehanizma primjenom teorije neizrazitih skupova. Osnovno obilježje automata FSOCA je sljedeće: neizraziti rezultati stanja pomoću Gausove funkcije koriste se kao skupovi neizrazitog stanja; neizrazita pravila preslikavanja (fuzzy mapping rules) kod fuzzy-conditioning-operacije zamjenjuju stohastičke "conditioning-operant" skupove preslikavanja. Stoga se automat FSOCA može koristiti za opisivanje, simuliranje i dizajniranje raznih samo-organizirajućih radnji fuzzy nesigurnog sustava. Automat FSOCA najprije usvaja online algoritam grupiranja (clustering) u svrhu podjele ulaznog prostora (input space) te koristi intenzitet pobude pravila preslikavanja kako bi odlučio treba li generirati novo pravilo preslikavanja da bi broj pravila preslikavanja bio ekonomičan. Dizajnirani FSOCA automat primijenjen je za reguliranje balansiranja gibanja robota s dva kotača. Kako se učenje nastavlja, odabrana vjerojatnoća fuzzy operanta koji optimalno slijedi postepeno će se povećavati, entropijsko djelovanje fuzzy operanta će se postepeno smanjivati pa će se automatski generirati i izbrisati neizrazita pravila preslikavanja. Nakon otprilike sedamnaest krugova obuke, odabrane vjerojatnosti neizrazitog posljedičnog optimalnog operanta postupno teže prema jednoj, entropija djelovanja neizrazitog operanta postupno se smanjuje i broj neizrazitih pravila preslikavanja postaje optimalan. Tako robot postupno uči vještinu balansiranja gibanja.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Tahriri F.; Mousavi M.; Yap H. J.; Siti Zawiah M. D.; Taha Z. Optimizing the Robot Arm Movement Time Using Virtual Reality Robotic Teaching System. // International Journal of Simulation Modelling. 14, 1 (2015), pp. 28-38. DOI: 10.2507/IJSIMM14(1)3.273
    • [2] Capi, G.; Nasu, Y.; Barolli, L. et al. Application of genetic algorithms for biped robot gait synthesis optimization during walking and going up-stairs. // Advanced Robotics, 15, 6 (2011), pp. 675-694. DOI: 10.1163/156855301317035197
    • [3] Karabegović, I.; Karabegović, E.; Mahmić, M.; Husak, E. The application of service robots for logistics in manufacturing processes. // Advances in Production Engineering & Management. 10, 4(2015), pp. 185-194. DOI: 10.14743/apem2015.4.201.
    • [4] Vilasís-Cardona, X.; Luengo, S.; Solsona, J. and et al. Guiding a Mobile Robot with Cellular Neural Networks. // International Journal of Circuit Theory and Applications. 30, 6(2002), pp. 611-624. DOI: 10.1002/cta.212
    • [5] Jerbic, B.; Nikolic, G.; Chudy, D.; Svaco, M.; Sekoranja B. Robotic Application in Neurosurgery Using Intelligent Visual and Haptic Interaction. // International Journal of Simulation Modelling. 14, 1(2015), pp. 71-84. DOI: 10.2507/IJSIMM14(1)7.290
    • [6] Chatterjee, P.; Mondal, S.; Chakraborty, S. A comparative study of preference dominance-based approaches for selection of industrial robots. // Advances in Production Engineering & Management. 9, 1(2014), pp. 5-20. DOI: 10.14743/apem2014.1.172.
    • [7] Zhang Z.-H.; Hu, C. Multi-Model Stability Control Method of Underactuated Biped Robots Based on Imbalance Degrees. // International Journal of Simulation Modelling. 14, 4(2015), pp. 647-657. DOI: 10.2507/IJSIMM14(4)7.318
    • [8] Veloso, M. M.; Rybski, P. E.; Chernova, S.; Vail, D. CMRoboBits: Creating an Intelligent AIBO Robot. // AI Magazine, 27, 1(2006), pp. 67-82.
    • [9] Touretzky, D. S.; Saksida, L. M. Operant Conditioning in Skinnerbots. // Adaptive Behavior. 5, 3/4(1997), pp. 219- 247. DOI: 10.1177/105971239700500302
    • [10] Zalama, E.; Gomez, J.; Paul, M.; Peran, J. R. Adaptive Behavior Navigation of a Mobile Robot. // IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans. 32, 1(2002), pp. 160-169. DOI: 10.1109/3468.995537
    • [11] Dominguez, S.; Zalama, E.; García-Bermejo, J. G.; Pulido, J. Robot Learning in a Social Robot. // Lecture Notes in Computer Science. 4095(2006), pp.691-702. DOI: 10.1007/11840541_57
    • [12] Gaudiano, P.; Chang, C. Adaptive Obstacle Avoidance with a Neural Network for Operant Conditioning: Experiments with Real Robots. // IEEE International Symposium on Computational Intelligence in Robotics and Automation / Monterey, CA, 1997, pp. 13-18. DOI: 10.1109/cira.1997.613832
    • [13] Itoh, K.; Miwa, H.; Matsumoto, M.; Zecca, M. et al. Behavior Model of Humanoid Robots Based on Operant Conditioning. // 5th IEEE-RAS International Conference on Humanoid Robots / Tsukuba, 2005, pp.220-225. DOI: 10.1109/ichr.2005.1573571
    • [14] Xiaogang, R.; Jianxian, C. Skinner-Pigeon Experiment Simulated Based on Probabilistic Automata. // Global Congress on Intelligent Systems, Xiamen, 2009, pp. 578- 581.
    • [15] Jianxian, C.; Xiaogang, R. OCPA bionic autonomous learning system and application on robot poster balance control. // Pattern Recognition and Artificial Intelligence, 24, 1(2011), pp. 138-146.
    • [16] Yuanyuan, G.; Xiaogang, R.; Hongjun, S. Operant conditioning learning automatic and its application on robot balance control. // Control and Decision. 28, 6(2013), pp. 930-939.
    • [17] Xiaogang, R.; Yuanyuan, G.; Hongjun, S. Bionic autonomous learning method based on operant conditioning automata. // Journal of Beijing University of Technology. 37, 11(2011), pp. 1631-1637.
    • [18] Xiaogang, R.; Jing, Ch.; Naigong Y. Thalamic Cooperation between Cerebellum and Basal Ganglia Based on a New Tropism-Based Action-Dependent Heuristic Programming Method. // Neurocomputing. 93, 15(2012), pp. 27-30.
    • [19] Hongge, R.; Xiaogang, R. A bionic learning algorithm based on Skinner's operant conditioning and control of robot. // Robot. 32, 1(2010), pp. 132-137. DOI: 10.3724/SP.J.1218.2010.00132
    • [20] Xiaogang, R.; Jing Ch. On-line NNAC for a Balancing Two-Wheeled Robot Using Feedback-Error-Learning on the Neurophysiological Mechanism. // Journal of Computers. 6, 3(2011), pp. 489-496.
    • [21] Ning, J.; Jianqiang, Y.; Dongbin, Zh. Reinforcement learning based online neural-fuzzy control system. // Journal of the Graduate School of the Chinese Academy of Sciences. 22, 5(2005), pp. 631-638.
    • [22] Ma, X. L.; Likharev, K. Global Reinforcement Learning in Neural Networks. // IEEE Trans. Neural network. 18, 2(2007), pp. 573-577. DOI: 10.1109/TNN.2006.888376
    • [23] Jouffe, L. Fuzzy Inference System Learning by Reinforcement Methods. // IEEE Trans. Syst., Man, Cybern. C. 28, 3(1998), pp. 338-355. DOI: 10.1109/5326.704563
    • [24] Juang, C. F. Combination of Online Clustering and QValue Based GA for Reinforcement Fuzzy System Design. // IEEE Trans on Fuzzy System. 13, 3(2005), pp. 289-302. DOI: 10.1109/TFUZZ.2004.841726
    • [25] Chen, Y.; Lu, X. F. Fuzzy Control for Radiative Reagent Diluting and Dividing Robot Arms. // Chinese Journal of Scientific Instrument. 30, 2(2009), pp. 330-334.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok