Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Dunning, Clare; Isaac, Phillip S.; Links, Jon; Zhao, Shao-You (2011)
Languages: English
Types: Preprint
Subjects: Mathematical Physics, Nonlinear Sciences - Exactly Solvable and Integrable Systems, Condensed Matter - Quantum Gases

Classified by OpenAIRE into

arxiv: Condensed Matter::Quantum Gases, Condensed Matter::Other
We analyse a p+ip-wave pairing BCS Hamiltonian, coupled to a single bosonic degree of freedom representing a molecular condensate, and investigate the nature of the BEC-BCS crossover for this system. For a suitable restriction on the coupling parameters, we show that the model is integrable and we derive the exact solution by the algebraic Bethe ansatz. In this manner we also obtain explicit formulae for correlation functions and compute these for several cases. We find that the crossover between the BEC state and the strong pairing p+ip phase is smooth for this model, with no intermediate quantum phase transition.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] C.A. Regal, M. Greiner, and D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004); V. Gurarie and L. Radzihovsky, Ann. Phys. 322, 2 (2007); I. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008); K. Levin, Q. Chen, C.-C. Chien, and Y. He, Ann. Phys. 325, 233 (2010).
    • [2] M. Holland, S.J.J.F. Kokkelmans, M.L. Chiofalo and R. Walser, Phys. Rev. Lett. 87, 120406 (2001); Y. Ohashi and A. Griffin, Phys. Rev. Lett. 89, 130402 (2002).
    • [3] Y. Ohashi, Phys. Rev. Lett. 94, 050403 (2005); V. Gurarie, L. Radzihovsky, and A.V. Andreev, Phys. Rev. Lett. 94, 230403 (2005); C.-H. Cheng and S.-K. Yip, Phys. Rev. Lett. 95, 070404 (2005).
    • [4] J.P. Gaebler, J.T. Stewart, J.L. Bohn, and D.S. Jin, Phys. Rev. Lett. 98, 200403 (2007).
    • [5] C. Nayak, S.H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008); C. Zhang, S. Tewari, R.M. Lutchyn, S. Das Sarma, Phys. Rev. Lett. 101, 160401 (2008); M. Sato, Y. Takahashi, S. Fujimoto, Phys. Rev. Lett. 103, 020401 (2009); N.R. Cooper and G.V. Shlyapnikov, Phys. Rev. Lett. 103, 155302 (2009); R. Roy, Phys. Rev. Lett. 105, 186401 (2010).
    • [6] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
    • [7] R.W. Richardson, Phys. Lett. 3, 277 (1963).
    • [8] J. von Delft and D.C. Ralph, Phys. Rep. 345, 61 (2001).
    • [9] M.C. Cambiaggio, A.M.F. Rivas, and M. Saraceno, Nucl. Phys. A 624, 157 (1997); L. Amico, G. Falci, and R. Fazio, J. Phys. A: Math. Gen. 34, 6425 (2001); J. von Delft and R. Poghossian, Phys. Rev. B 66, 134502 (2002); J. Links, H.-Q. Zhou, R.H. McKenzie, and M.D. Gould, J. Phys. A: Math. Gen. 36, R63 (2003); A.A. Ovchinnikov, Nucl. Phys. B 703, 363 (2003); J. Dukelsky, S. Pittel, and G. Sierra, Rev. Mod. Phys. 76, 643 (2004).
    • [10] L. Amico and A. Osterloh, Phys. Rev. Lett. 88, 127003 (2002); C. Dunning, J. Links, and H.-Q. Zhou, Phys. Rev. Lett. 94, 227002 (2005); A. Faribault, P. Calabrese, and J.-S. Caux, Phys. Rev. B 77, 064503 (2008); A. Faribault, P. Calabrese, and J.-S. Caux, J. Stat. Mech.: Theor. Exp., P03018 (2009); A. Faribault, P. Calabrese, and J.-S. Caux, J. Math. Phys. 50, 095212 (2009); A. Faribault, P. Calabrese, and J.-S. Caux, Phys. Rev. B 81, 174507 (2010).
    • [11] J. Dukelsky, G.G. Dussel, C. Esebbag, and S. Pittel, Phys. Rev. Lett. 93, 050403 (2004); E.A. Yuzbashyan, V.B. Kuznetsov, and B.L. Altshuler, Phys. Rev. B 72, 144524 (2005); K.E. Hibberd, C. Dunning, and J. Links, Nucl. Phys. B 748, 458 (2006); A.P. Itin, A.A. Vasiliev, G. Krishna, and S. Watanabe, Physica D 232, 108 (2007).
    • [12] M. Gaudin, J. Phys. France 37, 1087 (1976); O. Tsyplyatyev, J. von Delft, and D. Loss, Phys. Rev. B 82, 092203 (2010).
    • [13] M. Ibanez, J. Links, G. Sierra, and S.-Y, Zhao, Phys. Rev. B 79, 180501(R) (2009).
    • [14] T. Skrypnyk, J. Phys. A: Math. Theor. 42, 472004 (2009).
    • [15] C. Dunning, M. Ibanez, J. Links, G. Sierra, and S.-Y. Zhao, J. Stat. Mech. P08025 (2010).
    • [16] S.M.A. Rombouts, J. Dukelsky, and G. Ortiz, Phys. Rev B 82, 224510 (2010).
    • [17] L.D. Faddeev, E.K. Sklyanin, and L.A. Takhtajan, Theor. Math. Phys. 40, 688 (1979).
    • [18] A. Kundu, SIGMA 3, 040 (2007).
    • [19] N.A. Slavnov, Theor. Math. Phys. 79, 502 (1989).
    • [20] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Phys. Rev. Lett. 95, 230405 (2005).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

    Title Year Similarity

    The gravity dual of a p-wave superconductor


Share - Bookmark

Funded by projects

Cite this article

Collected from