OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Saga, Shohei; Tashiro, Hiroyuki; Yokoyama, Shuichiro (2017)
Languages: English
Types: Preprint
Subjects: Astrophysics - Cosmology and Nongalactic Astrophysics

Classified by OpenAIRE into

arxiv: Astrophysics::Cosmology and Extragalactic Astrophysics
We provide a new bound on the amplitude of primordial magnetic fields (PMFs) by using a novel mechanism, named {\it magnetic reheating}. Before the epoch of recombination, PMFs induce the fluid motions in a photon-baryon plasma through the Lorentz force. Due to the viscosity in the plasma, such induced fluid motions would be damped and this means the dissipation of PMFs. In the early Universe with $z \gtrsim 2 \times 10^6$, cosmic microwave background (CMB) photons are quickly thermalized with the dissipated energy and shift to a different Planck distribution with a new temperature. In other words, the energy injection due to the dissipation of PMFs changes the baryon-photon number ratio during this era and we name such a process {\it magnetic reheating}. By using the current results of the baryon-photon number ratio obtained from the Big Bang nucleosynthesis and CMB observations, we put a strongest constraint on the amplitude of PMFs on small scales which we can not access through CMB anisotropy and CMB distortions, $B_{0} \lesssim 1.0 \; \mu{\rm G}$ at the scales $10^{4} \; h{\rm Mpc}^{-1} < k < 10^{8} \; h{\rm Mpc}^{-1}$. Moreover, when the spectrum of PMFs is given by the power-law, the magnetic reheating puts a quite strong constraint in the case of the blue-tilted spectrum, for example, $B_0 \lesssim 10^{-17} \;{\rm nG}$, $10^{-23} \;{\rm nG}$, and $10^{-29} \;{\rm nG}$ at 1~comoving Mpc for $n_{B}=1.0$, $2.0$, and $3.0$, respectively. This constraint would give an impact on generation mechanisms of PMFs in the early Universe.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • D. Ryu, D. R. G. Schleicher, R. A. Treumann, C. G. Tsagas, and L. M. Widrow, Space Sci. Rev. 166, 1 (2012), 1109.4055:.
    • L. M. Widrow, D. Ryu, D. R. G. Schleicher, K. Subramanian, C. G. Tsagas, and R. A. Treumann, Space Sci. Rev. 166, 37 (2012), 1109.4052:.
    • A. Neronov and I. Vovk, Science 328, 73 (2010), 1006.3504:.
    • F. Tavecchio, G. Ghisellini, L. Foschini, G. Bonnoli, G. Ghirlanda, and P. Coppi, Mon. Not. Roy. Astron. Soc. 406, L70 (2010), 1004.1329:.
    • W. Essey, S. Ando, and A. Kusenko, Astropart. Phys. 35, 135 (2011), 1012.5313:.
    • H. Tashiro, W. Chen, F. Ferrer, and T. Vachaspati, Mon. Not. Roy. Astron. Soc. 445, L41 (2014), 1310.4826:.
    • W. Chen, J. H. Buckley, and F. Ferrer, Phys. Rev. Lett. 115, 211103 (2015), 1410.7717:.
    • R. Durrer and A. Neronov, Astron. Astrophys. Rev. 21, 62 (2013), 1303.7121:.
    • K. Subramanian, Rept. Prog. Phys. 79, 076901 (2016), 1504.02311:.
    • M. Kawasaki and M. Kusakabe, Phys. Rev. D 86, 063003 (2012), 1204.6164:.
    • K. Subramanian and J. D. Barrow, Physical Review Letters 81, 3575 (1998), astro-ph/9803261:.
    • J. R. Shaw and A. Lewis, Phys. Rev. D 81, 043517 (2010), 0911.2714:.
    • Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, F. Arroja, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, et al., A&A 594, A19 (2016), 1502.01594:.
    • K. Jedamzik, V. Katalinic, and A. V. Olinto, Phys. Rev. D57, 3264 (1998), astro-ph/9606080:.
    • K. Subramanian and J. D. Barrow, Phys. Rev. D58, 083502 (1998), astro-ph/9712083:.
    • J. Chluba and R. A. Sunyaev, MNRAS 419, 1294 (2012), 1109.6552:.
    • H. Tashiro, PTEP 2014, 06B107 (2014).
    • K. Jedamzik, V. Katalinic, and A. V. Olinto, Phys. Rev. Lett. 85, 700 (2000), astro-ph/9911100:.
    • K. Miyamoto, T. Sekiguchi, H. Tashiro, and S. Yokoyama, Phys. Rev. D89, 063508 (2014), 1310.3886:.
    • K. E. Kunze and E. Komatsu, J. Cosmology Astropart. Phys. 1, 009 (2014), 1309.7994:.
    • J. Ganc and M. S. Sloth, JCAP 1408, 018 (2014), 1404.5957:.
    • D. J. Fixsen, E. S. Cheng, J. M. Gales, J. C. Mather, R. A. Shafer, and E. L. Wright, Astrophys. J. 473, 576 (1996), astroph/9605054:.
    • T. Nakama, T. Suyama, and J. Yokoyama, Phys. Rev. Lett. 113, 061302 (2014), 1403.5407:.
    • P. A. R. Ade et al. (Planck), Astron. Astrophys. 571, A16 (2014), 1303.5076:.
    • K. M. Nollett and G. Steigman, Phys. Rev. D89, 083508 (2014), 1312.5725:.
    • W. Hu and J. Silk, Phys. Rev. D48, 485 (1993).
    • R. Durrer and C. Caprini, J. Cosmology Astropart. Phys. 11, 010 (2003), astro-ph/0305059:.
    • A. Mack, T. Kahniashvili, and A. Kosowsky, Phys. Rev. D 65, 123004 (2002), astro-ph/0105504:.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok