LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ravanbakhsh, Mahdyar; Mousavi, Hossein; Nabi, Moin; Rastegari, Mohammad; Regazzoni, Carlo (2016)
Languages: English
Types: Preprint
Subjects: Computer Science - Computer Vision and Pattern Recognition

Classified by OpenAIRE into

arxiv: Computer Science::Computer Vision and Pattern Recognition, Computer Science::Neural and Evolutionary Computation
ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
In this paper we introduce a novel method for general semantic segmentation that can benefit from general semantics of Convolutional Neural Network (CNN). Our segmentation proposes visually and semantically coherent image segments. We use binary encoding of CNN features to overcome the difficulty of the clustering on the high-dimensional CNN feature space. These binary codes are very robust against noise and non-semantic changes in the image. These binary encoding can be embedded into the CNN as an extra layer at the end of the network. This results in real-time segmentation. To the best of our knowledge our method is the first attempt on general semantic image segmentation using CNN. All the previous papers were limited to few number of category of the images (e.g. PASCAL VOC). Experiments show that our segmentation algorithm outperform the state-of-the-art non-semantic segmentation methods by large margin.

Share - Bookmark

Cite this article

Collected from