LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan (2017)
Languages: English
Types: Preprint
Subjects: Astrophysics - Solar and Stellar Astrophysics

Classified by OpenAIRE into

arxiv: Astrophysics::Solar and Stellar Astrophysics, Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::Galaxy Astrophysics, Astrophysics::Earth and Planetary Astrophysics
It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with a model population, we predict that the mass distribution of single low-mass white dwarfs formed through this channel spans the range 0.37 to 0.5Msolar and peaks between 0.45 and 0.46Msolar. Helium white dwarf--main-sequence star mergers can also lead to the formation of single helium white dwarfs with masses up to 0.51Msolar. In our model the Galactic formation rate of single low-mass white dwarfs through this channel is about 8.7X10^-3yr^-1. Comparing our models with observations, we find that the majority of single low-mass white dwarfs (<0.5Msolar) are formed from helium white dwarf--main-sequence star mergers, at a rate which is about $2$ per cent of the total white dwarf formation rate.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bergeron P., Saffer R. A., Liebert J., 1992, ApJ, 394, 228
    • Brown J. M., Kilic M., Brown W. R., Kenyon S. J., 2011, ApJ, 730, 67
    • Castellani M., Castellani V., 1993, ApJ, 407, 649
    • Clausen D., Wade R. A., 2011, ApJL, 733, L42
    • D'Cruz N. L., Dorman B., Rood R. T., O'Connell R. W., 1996, ApJ, 466, 359
    • Eggleton P. P., Fitchett M. J., Tout C. A., 1989, ApJ, 347, 998
    • Ferguson J. W., Alexander D. R., Allard F., Barman T., Bodnarik J. G., Hauschildt P. H., Heffner-Wong A., Tamanai A., 2005, ApJ, 623, 585
    • Geier S. et al., 2015, Science, 347, 1126
    • Grevesse N., Sauval A. J., 1998, Space Science Reviews, 85, 161
    • Han Z., 1998, MNRAS, 296, 1019
    • Han Z., Podsiadlowski P., Maxted P. F. L., Marsh T. R., Ivanova N., 2002, MNRAS, 336, 449
    • Han Z., Podsiadlowski P., Maxted P. F. L., Marsh T. R., 2003, MNRAS, 341, 669
    • Hurley J. R., Pols O. R., Tout C. A., 2000, MNRAS, 315, 543
    • Hurley J. R., Tout C. A., Pols O. R., 2002, MNRAS, 329, 897
    • Iglesias C. A., Rogers F. J., 1996, ApJ, 464, 943
    • Justham S., Wolf C., Podsiadlowski P., Han Z., 2009, A&A, 493, 1081
    • Kippenhahn R., Kohl K., Weigert A., 1967, Z. Astrophys., 66, 58
    • Liebert J., Bergeron P., Holberg J. B., 2005, ApJS, 156, 47
    • Maxted P. F. L., Marsh T. R., 1999, MNRAS, 307, 122
    • Maxted P. F. L., Marsh T. R., Moran C. K. J., Han Z., 2000, MNRAS, 314, 334
    • McDonald I., Zijlstra A. A., 2015, MNRAS, 448, 502
    • Miglio A., Brogaard K., Stello D., Chaplin W. J., D'Antona F., Montalbán J. e. a., 2012, MNRAS, 419, 2077
    • Miller G. E., Scalo J. M., 1979, ApJS, 41, 513
    • Nelemans G., Tauris T. M., 1998, A&A, 335, L85
    • Nelemans G., Siess L., Repetto S., Toonen S., Phinney E. S., 2016, ApJ, 817, 69
    • Paxton B., Bildsten L., Dotter A., Herwig F., Lesaffre P., Timmes F., 2011, ApJS, 192, 3
    • Paxton B. et al., 2013, ApJS, 208, 4
    • Paxton B. et al., 2015, ApJS, 220, 15
    • Saio H., Jeffery C. S., 2000, MNRAS, 313, 671
    • Schreiber M. R., Zorotovic M., Wijnen T. P. G., 2016, MNRAS, 455, L16
    • Shen K. J., Idan I., Bildsten L., 2009, ApJ, 705, 693
    • Wang B., Han Z., 2009, A&A, 508, L27
    • Yungelson L., Livio M., 1998, ApJ, 497, 168
    • Zhang X., Jeffery C. S., 2012, MNRAS, 419, 452
    • Zhang X., Jeffery C. S., Chen X., Han Z., 2014, MNRAS, 445, 660
    • Zhang X., Hall P. D., Jeffery C. S., Bi S., 2017, ApJ, 835, 242
    • Zorotovic M., Schreiber M. R., 2017, MNRAS, 466, L63
    • Zorotovic M., Schreiber M. R., Gänsicke B. T., 2011, A&A, 536, A42
    • mixing_length_alpha = 1.9179
    • Reimers_scaling_factor = 0.5
    • Blocker_scaling_factor = 0.5
    • RGB_to_AGB_wind_switch = 1d-4
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok