LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Romanoni, Andrea; Matteucci, Matteo (2016)
Languages: English
Types: Preprint
Subjects: Computer Science - Computer Vision and Pattern Recognition, I.4.5, Computer Science - Robotics

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_COMPUTERGRAPHICS, ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION, MathematicsofComputing_DISCRETEMATHEMATICS
Urban reconstruction from a video captured by a surveying vehicle constitutes a core module of automated mapping. When computational power represents a limited resource and, a detailed map is not the primary goal, the reconstruction can be performed incrementally, from a monocular video, carving a 3D Delaunay triangulation of sparse points; this allows online incremental mapping for tasks such as traversability analysis or obstacle avoidance. To exploit the sharp edges of urban landscape, we propose to use a Delaunay triangulation of Edge-Points, which are the 3D points corresponding to image edges. These points constrain the edges of the 3D Delaunay triangulation to real-world edges. Besides the use of the Edge-Points, a second contribution of this paper is the Inverse Cone Heuristic that preemptively avoids the creation of artifacts in the reconstructed manifold surface. We force the reconstruction of a manifold surface since it makes it possible to apply computer graphics or photometric refinement algorithms to the output mesh. We evaluated our approach on four real sequences of the public available KITTI dataset by comparing the incremental reconstruction against Velodyne measurements.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from