LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Peng, Shi-Guo; Hu, Hui; Liu, Xia-Ji; Drummond, Peter D. (2011)
Languages: English
Types: Preprint
Subjects: Condensed Matter - Quantum Gases
We develop the theory of anharmonic confinement-induced resonances (ACIR). These are caused by anharmonic excitation of the transverse motion of the center of mass (COM) of two bound atoms in a waveguide. As the transverse confinement becomes anisotropic, we find that the COM resonant solutions split for a quasi-1D system, in agreement with recent experiments. This is not found in harmonic confinement theories. A new resonance appears for repulsive couplings ($a_{3D}>0$) for a quasi-2D system, which is also not seen with harmonic confinement. After inclusion of anharmonic energy corrections within perturbation theory, we find that these ACIR resonances agree extremely well with anomalous 1D and 2D confinement induced resonance positions observed in recent experiments. Multiple even and odd order transverse ACIR resonances are identified in experimental data, including up to N=4 transverse COM quantum numbers.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1.4 a (units of 1000a0) [2] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963);
    • E. H. Lieb, ibid, 130, 1616 (1963). [3] C. N. Yang, C. P. Yang, J. Math. Phys. 10, 1115 (1969). [4] D. M. Gangardt and G. V. Shlyapnikov, Phys. Rev. Lett.
    • 90, 010401 (2003). [5] K. V. Kheruntsyan, D. M. Gangardt, P. D. Drummond,
    • and G. V. Shlyapnikov, Phys. Rev. Lett. 91, 040403
    • (2003); K. V. Kheruntsyan, D. M. Gangardt, P. D. Drum-
    • mond, and G. V. Shlyapnikov, Phys. Rev. A 71, 053615
    • (2005). [6] B. Laburthe Tolra, K. M. O'Hara, J. H. Huckans, W. D.
    • 92, 190401 (2004). [7] T. Kinoshita, T. R. Wenger and D. S. Weiss, Science 305,
    • 1125 (2004). [8] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R.
    • Hart, G. Pupillo, and H. C. Nagerl, Science 325, 1224
    • (2009). [9] Berezins.Vl, Soviet Physics Jetp-Ussr 32, 493 (1971). [10] J. M. Kosterlitz and D. J. Thouless, Journal of Physics
    • C-Solid State Physics 6, 1181 (1973). [11] Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier, and
    • J. Dalibard, Nature 441, 1118 (2006). [12] H. Feshbach, Annals of Physics 281, 519 (1962). [13] T. Kohler, K. Goral, and P. S. Julienne, Rev. Mod. Phys.
    • 78, 1311 (2006). [14] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
    • 80, 885 (2008). [15] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998). [16] T. Bergeman, M. G. Moore, and M. Olshanii, Phys. Rev.
    • Lett. 91, 163201 (2003). [17] Y. Nishida, and S. Tan, Physical Review Letters 101,
    • 170401 (2008); Y. Nishida, and S. Tan, Physical Review
    • A 82, 062713 (2010). [18] G. Lamporesi, J. Catani, G. Barontini, Y. Nishida, M.
    • Inguscio, and F. Minardi, Phys. Rev. Lett. 104, 153202
    • (2010). [19] S.-G. Peng, S. S. Bohloul, X.-J. Liu, H. Hu, and P. D.
    • Drummond, Phys. Rev. A 82, 063633 (2010). [20] D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov,
    • Phys. Rev. Lett. 84, 2551 (2000). [21] D. S. Petrov and G. V. Shlyapnikov, Phys. Rev. A 64,
    • 012706 (2001). [22] P. Naidon, E. Tiesinga, W. F. Mitchell, and P. S. Juli-
    • enne, New Journal of Physics 9, 19 (2007). [23] E. Haller, M. J. Mark, R. Hart, J. G. Danzl, L. Reichsoll-
    • Rev. Lett. 104, 153203 (2010). Note that in comparisons
    • with this paper, we use the notation ωx = ω2, ωy = ω1. [24] Bernd Frohlich, Michael Feld, Enrico Vogt, Marco
    • Rev. Lett. 106, 105301 (2011). [25] C. Vale, private communication. [26] W. Kohn, Phys. Rev. 123, 1242 (1961); J. F. Dobson,
    • Phys. Rev. Lett. 73, 2244 (1994). [27] V. Peano, M. Thorwart, C. Mora and R. Egger, New J.
    • Phys. 7, 192 (2005). [28] J. P. Kestner and L. M. Duan, New J. Phys. 12, 11
    • (2010). [29] Simon Sala, Philipp-Immanuel Schneider, Alejandro
    • Saenz, arXiv:1104.1561 (2011). [30] P. D. Drummond, K. V. Kheruntsyan, H. He, J Opt B
    • 1, 387-395 (1999); K. V. Kheruntsyan and P. D. Drum-
    • mond, Phys. Rev. A 61, 063816 (2000); P. D. Drummond
    • and K. V. Kheruntsyan, Phys. Rev. A 70, 033609 (2004). [31] A. D. Lange, K. Pilch, A. Prantner, F. Ferlaino, B. En-
    • A 79, 013622 (2009). [32] Hans Peter Büchler, Phys. Rev. Lett. 104, 090402 (2010).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article

Collected from