LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D. (2005)
Languages: English
Types: Preprint
Subjects: Condensed Matter - Other Condensed Matter

Classified by OpenAIRE into

arxiv: Physics::Optics
A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order planes (corresponding to the excitation of photonic modes in the crystal). Reflectance measurements on artificial opals made of self-assembled polystyrene spheres are analyzed according to the theoretical scheme and give evidence of diffraction by higher-order crystalline planes in the photonic structure.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    • 2 S. John, Phys. Rev. Lett. 58, 2486 (1987).
    • 3 Photonic Crystals and Light Localization in the 21st Century, edited by C.M. Soukoulis, NATO Science Series C, vol. 563 (Kluwer, Dordrecht, 2001).
    • 4 For recent reviews, see e.g. papers in IEEE J. Quantum Electron. 38, Feature Section on Photonic Crystal Structures and Applications, edited by T.F. Krauss and T. Baba, pp. 724-963 (2002).
    • 5 J.E.G.J. Wijnhoven and W.L. Vos, Science 281, 802 (1998).
    • 6 A.A. Zakhidov, R.H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S.O. Dantas, J.I. Marti, and V.G. Ralchenko, Science 282, 897 (1998).
    • 7 A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. L´opez, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader, and H.M. van Driel, Nature 405, 437 (2000).
    • 8 Yu.A. Vlasov, X.-Z. Bo, J.C. Sturm, and D.J. Norris, Nature 414, 289 (2001).
    • 9 H.S. S¨ozu¨er, J.W. Haus, and N. Inguva, Phys. Rev. B 45 13962 (1992).
    • 10 K. Busch, and S. John, Phys. Rev. E 58 3896 (1998).
    • 11 W.L. Vos, R. Sprik, A. van Bladeren, A. Imhof, A. Lagendijk, and G.H. Wegdam, Phys. Rev. B 53, 16231 (1996).
    • 12 I.I. Tarhan and G.H. Watson, Phys. Rev. Lett. 76, 315 (1996).
    • 13 Yu.A. Vlasov, V.N. Astratov, O.Z. Karimov, A.A. Kaplyanskii, V.N. Bogomolov, and A.V. Prokofiev, Phys. Rev. B 55, R13357 (1997).
    • 14 V.N. Bogomolov, S.V. Gaponenko, I.N. Germanenko, A.M. Kapitonov, E.P. Petrov, N.V. Gaponenko, A.V. Prokofiev, A.N. Ponyanina, N.I. Silvanovich, and S.M. Samoilovich, Phys. Rev. E 55, 7619 (1997).
    • 15 H. M´ıguez, C. L´opez, F. Meseguer, A. Blanco, L. V´azquez, R. Mayoral, M. Ocan˜a, V. Forn´es, and A. Mifsud, Appl. Phys. Lett. 71, 1148 (1997).
    • 16 H. M´ıguez, A. Blanco, F. Meseguer, C. L´opez, H.M. Yates, M.E. Pemble, V. Forn´es, and A. Mifsud, Phys. Rev. B 59, 1563 (1999).
    • 17 M. Thijssen, R. Sprik, J.E.G.J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W.L. Vos, Phys. Rev. Lett. 83, 2730 (1999).
    • 18 A. Imhof, W.L. Vos, and A. Lagendijk, Phys. Rev. Lett. 83, 2942 (1999).
    • 19 M.M. Megens, J.E.G.J. Wijnhoven, A. Lagendijk, and W.L. Vos, Phys. Rev. A 59, 4727 (1999).
    • 20 A. Reynolds, F. L´opez-Tejeira, D. Cassagne, F.J. Garc´ıaVidal, C. Jouanin, and J. S´anchez-Dehesa, Phys. Rev. B 60, 11422 (1999).
    • 21 Yu. A. Vlasov, V.N. Astratov, A.V. Baryshev, A.A. Kaplyanskii, O.Z. Karimov, and M.F. Limonov, Phys. Rev. E 61, 5784 (2000).
    • 22 Yu.A. Vlasov, M. Deutsch, and D.J. Norris, Appl. Phys. Lett. 76, 1627 (2000).
    • 23 H.P. Schriemer, H.M. van Driel, A.F. Koenderink, and W.L. Vos, Phys. Rev. A 63, 011801 (2000).
    • 24 H.M. van Driel and W.L. Vos, Phys. Rev. B 62, 9872 (2000).
    • 25 W.L. Vos and H.M. van Driel, Phys. Lett. A 272, 101 (2000).
    • 26 S.G. Romanov, T. Maka, C.M. Sotomayor Torres, M. Mu¨ller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, Phys. Rev. E 63, 056603 (2001).
    • 27 A.F. Koenderink, L. Bechger, H.P. Schriemer, A. Lagendijk, and W.L. Vos, Phys. Rev. Lett. 88, 143903 (2002).
    • 28 J.F.G. L`opez and W.L. Vos, Phys. Rev. E 66, 036616 (2002).
    • 29 V.N. Astratov, A.M. Adawi, S. Fricker, M.S. Skolnick, D.M. Whittaker, and P.N. Pusey, Phys. Rev. B 66, 165215 (2002).
    • 30 J.F. Galisteo-L´opez, F. L´opez-Tejeira, S. Rubio, C. L´opez, and J. S´anchez-Dehesa, Appl. Phys. Lett. 82, 4068 (2003).
    • 31 H. M´ıguez, V. Kitaev, and G.A. Ozin, Appl. Phys. Lett. 84, 1239 (2004).
    • 32 J.F. Galisteo-L´opez, E. Palacios-Lid´on, E. CastilloMart´ınez, and C. L´opez, Phys. Rev. B 68, 115109 (2003).
    • 33 J.F. Galisteo-L´opez and C. L´opez, Phys. Rev. B 70, 035108 (2004).
    • 34 V. Yannopapas, N. Stefanou, and A. Modinos, J. Phys: Cond. Matt. 9, 10261 (1997).
    • 35 Z.-Y. Li, and Z.-Q. Zhang, Phys. Rev. B 62, 1516 (2000).
    • 36 V. Yannopapas, N. Stefanou, and A. Modinos, Phys. Rev. Lett. 86, 4811 (2001).
    • 37 T. Ochiai, K. Sakoda, and J. S´anchez-Dehesa, Phys. Rev. B 64, 245113 (2001).
    • 38 F. L´opez-Tejeira, T. Ochiai, K. Sakoda, and J. S´anchezDehesa, Phys. Rev. B 65, 195110 (2002).
    • 39 Z.L. Wang, C.T. Chan, W.Y. Zhang, Z. Chen, N.B. Ming, and P. Sheng, Phys. Rev. E 67, 016612 (2003).
    • 40 N. Eradat, A. Y. Sivachenko, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov and R. H. Baughman, Appl. Phys. Lett. 80, 3491 (2002).
    • 41 T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, Phys. Rev. B 57, 12428 (1998).
    • 42 V.N. Astratov, D.M. Whittaker, I.S. Culshaw, R.M. Stevenson, M.S. Skolnick, T.F. Krauss, and R.M. De La Rue, Phys. Rev. B 60, R16255 (1999).
    • 43 V. Pacradouni, W.J. Mandeville, A.R. Cowan, P. Paddon, J.F. Young, and S.R. Johnson, Phys. Rev. B 62, 4204 (2000).
    • 44 M. Galli, M. Agio, L.C. Andreani, L. Atzeni, D. Bajoni, G. Guizzetti, L. Businaro, E. Di Fabrizio, F. Romanato, and A. Passaseo, Eur. Phys. J. B 27, 79 (2002).
    • 45 M. Galli, M. Agio, L.C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, Phys. Rev. B 65, 113111 (2002).
    • 46 D. Comoretto, E. Pavarini, M. Galli, C. Soci, F. Marabelli, and L.C. Andreani, SPIE Proc. 5511, 135 (2004).
    • 47 K.M. Ho, C.T. Chan, and C.M. Soukoulis, Phys. Rev. Lett. 65, (1990) 3152.
    • 48 X. Ma, J.Q. Lu, R.S. Brock, K.M. Jacobs, P. Yang, and X.-H. Hu, Phys. Med. Biol. 48, 4165 (2003).
    • 49 According to Ref. 48, the refractive index n = 1.59 of polystyrene spheres refers to a wavelength λ = 500 nm. Its dispersion has been measured to be no more than ±1.5% around this value in the wavelength range 400-1600 nm. The effect of the index dispersion is negligibly small in the frequency window relevant for spectral features observed around 2.5-3 eV and discussed in this work.
    • 50 For a given pair of values (θ, φ), the wavevector kz satisfying the coupled Eqs. (2),(3) traces a curved path in the fcc Brillouin zone, due to the strongly dispersive properties of the photonic crystal.
    • 51 Notice that if the reduced DOS was summed over both positive and negative kz, it would become identical for the LK and LU directions. However, the two orientations are physically inequivalent and give rise to different transmission spectra, thus it is useful to define the reduced DOS by summing over positive kz as done in Eq.(4).
    • 52 D.M. Whittaker and I.S. Culshaw, Phys. Rev. B 60, 2610 (1999).
    • 53 Since the scattering-matrix method of Ref. 52 applies to a structures consisting of patterned layers which are homogeneous along a specified (z) direction, the dielectric spheres in the opal structure have been approximated with cylindrical layers. The results shown in Fig. 4c,d are obtained by averaging over calculations with a number of periods in the [111] direction ranging from 4 to 10, in order to smooth out finite-size oscillations.
    • 54 D. Comoretto, R. Grassi, F. Marabelli, and L.C. Andreani, Mat. Sci Eng. C 23, 61 (2003); D. Comoretto, F. Marabelli, C. Soci, M. Galli, E. Pavarini, M. Patrini and L.C. Andreani, Synt. Met. 139, 633 (2003).
    • 55 D. Comoretto, D. Cavallo, G. Dellepiane, R. Grassi, F. Marabelli, L.C. Andreani, C.J. Brabec, A. Andreev, and A.A. Zakhidov, Mat. Res. Soc. Symp. Proc. 708, BB10.19.1 (2002).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from