OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tsukerman, Emmanuel; Veomett, Ellen (2016)
Languages: English
Types: Preprint
Subjects: Mathematics - Probability, Mathematics - Metric Geometry, Mathematics - Differential Geometry
We give a short and simple proof of Cauchy's surface area formula, which states that the average area of a projection of a convex body is equal to its surface area up to a multiplicative constant in the dimension.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [Bon29] T Bonnesen. Les problemes des isoperimetres et des isepiphanes. 1929.
    • [Cau41] Augustin Cauchy. Note sur divers theorems relatifs a la recti cation des courbes et a la quadrature des surfaces. C.R. Acad. Sci., 13:1060{1065, 1841.
    • [Cau50] Augustin Cauchy. Memoire sur la recti cation des courbes et la quadrature des surfaces courbes. Mem. Acad. Sci, 22(3), 1850.
    • [KR97] Daniel A. Klain and Gian-Carlo Rota. Introduction to geometric probability. Lezioni Lincee. [Lincei Lectures]. Cambridge University Press, Cambridge, 1997.
    • [Kub25] T Kubota. uber konvex-geschlossene manningfaltigkeiten im n-dimensionalen raume. Sci. Rep. To^hoku Univ., 14:85{99, 1925.
    • [Min] H Minkowski. Theorie der konvexen korper, insbesondere begrundung ihres ober achenbegri s. Ges. Abh., 2:131{229.
    • [Sch14] Rolf Schneider. Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, expanded edition, 2014.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok