Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Surmin, I. A.; Bastrakov, S. I.; Efimenko, E. S.; Gonoskov, A. A.; Korzhimanov, A. V.; Meyerov, I. B. (2015)
Languages: English
Types: Preprint
Subjects: Physics - Plasma Physics, Physics - Computational Physics

Classified by OpenAIRE into

ACM Ref: ComputerSystemsOrganization_PROCESSORARCHITECTURES
This paper concerns development of a high-performance implementation of the Particle-in-Cell method for plasma simulation on Intel Xeon Phi coprocessors. We discuss suitability of the method for Xeon Phi architecture and present our experience of porting and optimization of the existing parallel Particle-in-Cell code PICADOR. Direct porting with no code modification gives performance on Xeon Phi close to 8-core CPU on a benchmark problem with 50 particles per cell. We demonstrate step-by-step application of optimization techniques such as improving data locality, enhancing parallelization efficiency and vectorization that leads to 3.75 x speedup on CPU and 7.5 x on Xeon Phi. The optimized version achieves 18.8 ns per particle update on Intel Xeon E5-2660 CPU and 9.3 ns per particle update on Intel Xeon Phi 5110P. On a real problem of laser ion acceleration in targets with surface grating that requires a large number of macroparticles per cell the speedup of Xeon Phi compared to CPU is 1.6 x.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] G. Mourou, T. Tajima, S. Bulanov. Optics in the relativistic regime. Rev. Mod. Phys., 78 (2) (2006), pp. 309-371
    • [2] A.V. Korzhimanov, A.A. Gonoskov, E.A. Khazanov, A.M. Sergeev. Horizons of petawatt laser technology. Phys-Usp+, 54 (1) (2011), pp. 9-28
    • [3] I.Yu. Kostyukov, A.M. Pukhov. Plasma-based methods for electron acceleration: current status and prospects. Phys-Usp+, 58 (1) (2015), pp. 81-88
    • [4] A. Macchi, M. Borghesi, M. Passoni. Ion acceleration by superintense laserplasma interaction. Rev. Mod. Phys., 85 (2) (2013)
    • [5] V.Y. Bychenkov, A.V. Brantov, E.A. Govras, V.F. Kovalev. Laser acceleration of ions: recent results and prospects for applications. Phys-Usp+, 58 (1) (2015), pp. 71-81.
    • [6] U. Teubner, P. Gibbon. High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys., 81 (2) (2009), pp. 445-479
    • [7] A. Di Piazza, C. Mu¨ller, K.Z. Hatsagortsyan, C.H. Keitel. Extremely highintensity laser interactions with fundamental quantum systems. Rev. Mod. Phys., 84 (3) (2012), pp. 1177-1228
    • [8] N.B. Narozhny, A.M. Fedotov. Quantum-electrodynamic cascades in intense laser fields. Phys-Usp+, 58 (1) (2015), pp. 95-102
    • [9] M. Ghoranneviss, A.S. Elahi. Review on Recent Developments in Laser Driven Inertial Fusion. Sci. Technol. Nucl. Ins. (2014)
    • [10] K.W.D. Ledingham, P.R. Bolton, N. Shikazono, C.-M. Ma. Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress. Retrieved from http://arxiv.org/abs/1405.2657
    • [11] F. Albert, A.G.R. Thomas, S.P.D. Mangles, S. Banerjee, S. Corde, A. Flacco, et al. Laser wakefield accelerator based light sources: potential applications and requirements. Plasma Phys. Control. Fusion, 56 (8) (2014)
    • [12] C.K. Birdsal, A.B. Langdon. Plasma physics via computer simulation. CRC Press (2004)
    • [13] M. Shoucri. Eulerian codes for the numerical solution of the Vlasov equation. Commun. Nonlinear Sci. Numer. Simul., 13 (1) (2008), pp. 174-182
    • [14] R.A. Fonseca, J. Vieira, F. Fiuza, A. Davidson, F.S. Tsung, W.B. Mori, L.O. Silva.: Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators. Plasma Phys. Control. Fusion, 55 (12) (2013)
    • [15] K.J. Bowers, B.J. Albright, L. Yin, B. Bergen, T.J.T. Kwan. Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas, 15 (2008)
    • [16] A. Pukhov. Three-dimensional electromagnetic relativistic particle-in-cell code VLPL. J. Plasma Phys, 61 (1999), pp. 425-433
    • [17] J-L Vay, et al. Simulating relativistic beam and plasma systems using an optimal boosted frame . J. Phys. Conf. Ser., 180 (2009)
    • [18] H. Burau, R. Widera, W. Honig, G. Juckeland, A. Debus, T. Kluge, U. Schramm, T.E. Cowan, R. Sauerbrey, M. Bussmann. PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster. IEEE T. Plasma Sc., 38 (10) (2010), pp. 2831-2839
    • [19] J. Jeffers, J. Reinders. High performance parallelism pearls. Morgan Kaufmann (2014)
    • [20] I.M. Kulikov, I.G. Chernykh, A.V. Snytnikov, B.M. Glinskiy, A.V. Tutukov. AstroPhi: a code for complex simulation of the dynamics of astrophysical objects using hybrid supercomputers // Comput. Phys. Commun., 186 (2015), pp. 71-80
    • [21] H. Nakashima. Manycore challenge in particle-in-cell simulation: how to exploit 1 TFlops peak performance for simulation codes with irregular computation. Comput. Electr. Eng. (2015)
    • [22] S. Bastrakov, R. Donchenko, A. Gonoskov, E. Efimenko, A. Malyshev, I. Meyerov, I. Surmin. Particle-in-cell plasma simulation on heterogeneous cluster systems. J. Comput. Sci., 3 (2012), pp. 474-479
    • [23] S. Bastrakov, I. Meyerov, I. Surmin, E. Efimenko, A. Gonoskov, A. Malyshev, M. Shiryaev. Particle-in-Cell plasma simulation on CPUs, GPUs and Xeon Phi coprocessors. Lecture Notes in Comput. Sci., 8488 (2014)
    • [24] A. Taflove. Computational electrodynamics: the finite-difference timedomain method. London: Artech House (1995)
    • [25] A. Gonoskov, S. Bastrakov, E. Efimenko, A. Ilderton, M. Marklund, I. Meyerov, A. Muraviev, I. Surmin, E. Wallin. Extending PIC schemes for the study of physics in ultra-strong laser fields. arXiv:1412.6426v1
    • [26] J. Jeffers, J. Reinders. Intel Xeon Phi coprocessor high performance programming. Morgan Kaufmann (2013)
    • [27] S.C. Wilks, A.B. Langdon, T.E. Cowan, M. Roth, M. Singh, S. Hatchett, et al. Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas, 8 (2) (2001), pp. 542-549
    • [28] Y. Nodera, S. Kawata, N. Onuma, J. Limpouch, O. Klimo, T. Kikuchi. Improvement of energy-conversion efficiency from laser to proton beam in a laser-foil interaction. Phys. Rev. E, 78 (4) (2008), 046401
    • [29] K.H. Pae, I.W. Choi, S.J. Hahn, J.R. Cary, J. Lee. Proposed hole-target for improving maximum proton energy driven by a short intense laser pulse. Phys. Plasmas, 16 (7) (2009), 073106
    • [30] K. Takahashi, S. Kawata, D. Satoh, Y.Y. Ma, D. Barada, Q. Kong, P.X. Wang. Efficient energy conversion from laser to proton beam in a laser-foil interaction. Phys. Plasmas, 17 (9) (2010), 093102
    • [31] A. Andreev, N. Kumar, K. Platonov, A. Pukhov, A. Efficient generation of fast ions from surface modulated nanostructure targets irradiated by high intensity short-pulse lasers. Phys. Plasmas, 18 (10) (2011), 103103
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from