LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Afifi, Mahmoud (2018)
Languages: English
Types: Preprint
Subjects: Computer Science - Computer Vision and Pattern Recognition

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION, ComputingMethodologies_COMPUTERGRAPHICS
The goal of computational color constancy is to preserve the perceptive colors of objects under different lighting conditions by removing the effect of color casts caused by the scene's illumination. With the rapid development of deep learning based techniques, significant progress has been made in image semantic segmentation. In this work, we exploit the semantic information together with the color and spatial information of the input image in order to remove color casts. We train a convolutional neural network (CNN) model that learns to estimate the illuminant color and gamma correction parameters based on the semantic information of the given image. Experimental results show that feeding the CNN with the semantic information leads to a significant improvement in the results by reducing the error by more than 40%.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from