LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Xin; Duan, Runyao (2016)
Languages: English
Types: Preprint
Subjects:

Classified by OpenAIRE into

arxiv: Quantum Physics
A new additive and semidefinite programming (SDP) computable entanglement measure is introduced to upper bound the amount of distillable entanglement in bipartite quantum states by operations completely preserving the positivity of partial transpose (PPT). This quantity is always smaller than or equal to the logarithmic negativity, the previously best known SDP bound on distillable entanglement, and the inequality is strict in general. Furthermore, a succinct SDP characterization of the one-copy PPT deterministic distillable entanglement for any given state is also obtained, which provides a simple but useful lower bound on the PPT distillable entanglement. Remarkably, there is a genuinely mixed state of which both bounds coincide with the distillable entanglement while being strictly less than the logarithmic negativity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. B. Plenio and S. Virmani, Quantum Inf. Comput. 7, 1 (2007).
    • [2] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
    • [3] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).
    • [4] E. M. Rains, Phys. Rev. A 60, 173 (1999).
    • [5] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).
    • [6] C. H. Bennett, G. Brassard, C. Cre┬┤peau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
    • [7] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
    • [8] K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A 58, 883 (1998).
    • [9] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).
    • [10] J. Eisert, Ph.D. thesis, University of Potsdam, 2001.
    • [11] M. B. Plenio, Phys. Rev. Lett. 95, 090503 (2005).
    • [12] E. M. Rains, IEEE Trans. Inf. Theory 47, 2921 (2001).
    • [13] X. Wang and R. Duan, arXiv:1605.00348.
    • [14] V. Vedral and M. B. Plenio, Phys. Rev. A 57, 1619 (1998).
    • [15] E. M. Rains, Phys. Rev. A 60, 179 (1999).
    • [16] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 84, 4260 (2000).
    • [17] M. Christandl and A. Winter, J. Math. Phys. 45, 829 (2004).
    • [18] Y. Huang, New J. Phys., 16, 33027 (2014).
    • [19] K. G. H. Vollbrecht and R. F. Werner, Phys. Rev. A 64, 062307 (2001).
    • [20] B. M. Terhal and K. G. H. Vollbrecht, Phys. Rev. Lett. 85, 2625 (2000).
    • [21] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 59, 1070 (1999).
    • [22] L. Vandenberghe and S. Boyd, SIAM Rev. 38, 49 (1996).
    • [23] L. G. Khachiyan, USSR Comput. Math. Phys. 20, 53 (1980).
    • [24] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, http://cvxr.com (2014).
    • [25] J. Watrous, Theory of Quantum Information, University of Waterloo, 2001.
    • [26] W. Matthews and A. Winter, Phys. Rev. A 78, 012317 (2008).
    • [27] M. Slater, in Traces and Emergence of Nonlinear Programming, edited by G. Giorgi and H. T. Kjeldsen (Springer Basel, 2014) pp. 293-306.
    • [28] R. Duan, Y. Feng, Z. Ji, and M. Ying, Phys. Rev. A 71, 022305 (2005).
    • [29] T. Eggeling, K. G. H. Vollbrecht, R. F. Werner, and M. M. Wolf, Phys. Rev. Lett. 87, 257902 (2001).
    • [30] X. Wang and R. Duan, arXiv:1606.09421.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok