Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Scholberg, Kate (2005)
Languages: English
Types: Preprint
Subjects: High Energy Physics - Phenomenology, High Energy Physics - Experiment

Classified by OpenAIRE into

arxiv: High Energy Physics::Experiment, Physics::Instrumentation and Detectors, Nuclear Theory, Nuclear Experiment, High Energy Physics::Phenomenology
Rates of coherent neutrino-nucleus elastic scattering at a high-intensity stopped-pion neutrino source in various detector materials (relevant for novel low-threshold detectors) are calculated. Sensitivity of a coherent neutrino-nucleus elastic scattering experiment to new physics is also explored.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] D. Z. Freedman, D. N. Schramm, and D. L. Tubbs, Ann. Rev. Nucl. Part. Sci. 27, 167 (1977).
    • [2] A. Drukier and L. Stodolsky, Phys. Rev. D30, 2295 (1984).
    • [3] C. J. Horowitz, K. J. Coakley, and D. N. McKinsey, Phys. Rev. D68, 023005 (2003), astro-ph/0302071.
    • [4] F. Boehm and P. Vogel, Physics of Massive Neutrinos (Cambridge University Press, Cambridge, 1987).
    • [5] P. Barbeau, J. I. Collar, J. Miyamoto, and I. Shipsey, IEEE Trans. Nucl. Sci. 50, 1285 (2003), hep-ex/0212034.
    • [6] C. Hagmann and A. Bernstein, IEEE Trans. Nucl. Sci. 51, 2151 (2004), nucl-ex/0411004.
    • [7] H. T. Wong (2005), hep-ex/0511001.
    • [8] D. N. McKinsey and K. J. Coakley, Astropart. Phys. 22, 355 (2005), astro-ph/0402007.
    • [9] M. G. Boulay, A. Hime, and J. Lidgard (2004), nuclex/0410025.
    • [10] M. G. Boulay and A. Hime (2004), astroph/0411358.
    • [11] E. Aprile et al., Phys. Rev. D72, 072006 (2005), astro-ph/0503621.
    • [12] Y. Takeuchi, in Proceedings of the 32nd International Conference on High-Energy Physics (ICHEP 04), Beijing, China, 16-22 Aug 2004 (World Scientific, Hackensack, 2004).
    • [13] G. J. Alner et al. (UK Dark Matter), Astropart. Phys. 23, 444 (2005).
    • [14] D. P. Snowden-Ifft, T. Lawson, N. J. C. Spooner, and N. Villaume, Nucl. Instrum. Meth. A516, 406 (2004).
    • [15] R. Galea (2005), http://snolab2005.snolab.ca/talks/ Snolab workshopIV galea ebubble.pdf.
    • [16] D. S. Akerib et al., Nucl. Instrum. Meth. A520, 163 (2004).
    • [17] D. S. Akerib et al., Nucl. Instrum. Meth. A520, 116 (2004).
    • [18] W. J. Bolte et al. (2005), astro-ph/0503398.
    • [19] M. Barnabe-Heider et al. (PICASSO), Nucl. Instrum. Meth. A555, 184 (2005), physics/0508098.
    • [20] C. Athanassopoulos et al. (LSND), Nucl. Instrum. Meth. A388, 149 (1997), nucl-ex/9605002.
    • [21] R. L. Burman, Nucl. Instrum. Meth. A368, 416 (1996).
    • [22] I. S. K. Gardner, in 6th European Particle Accelerator Conference (EPAC 98), Stockholm, Sweden, 22- 26 Jun 1998 (IOP Publishing, Philadelphia, 1998).
    • [23] Y. Ikeda (2003), http://www.fz-juelich.de/ess/ datapool/icanspdf/Ikeda-G3-paper.pdf.
    • [24] F. T. Avignone and Y. V. Efremenko, J. Phys. G29, 2615 (2003).
    • [25] Nu-SNS Collaboration (2005), http://www.phy.ornl.gov/nusns/proposal.pdf.
    • [26] C. J. Horowitz and G. Shen (2005), private communication.
    • [27] C. J. Horowitz (2005), private communication.
    • [28] L. M. Krauss, Phys. Lett. B269, 407 (1991).
    • [29] Note that for an SNS configuration, most sterile oscillation scenarios are already quite well constrained by other experiments, especially assuming a null result from Mini-BooNE.
    • [30] S. C. Bennett and C. E. Wieman, Phys. Rev. Lett. 82, 2484 (1999), hep-ex/9903022.
    • [31] S. Eidelman et al. (Particle Data Group), Phys. Lett. B592, 1 (2004).
    • [32] P. L. Anthony et al. (SLAC E158), Phys. Rev. Lett. 95, 081601 (2005), hep-ex/0504049.
    • [33] G. P. Zeller et al. (NuTeV), Phys. Rev. Lett. 88, 091802 (2002), hep-ex/0110059.
    • [34] J. Barranco, O. G. Miranda, and T. I. Rashba, JHEP 12, 021 (2005), hep-ph/0508299.
    • [35] S. Davidson, C. Pen˜a Garay, N. Rius, and A. Santamaria, JHEP 03, 011 (2003), hep-ph/0302093.
    • [36] A. Friedland and C. Lunardini, Phys. Rev. D72, 053009 (2005), hep-ph/0506143.
    • [37] A. Friedland, C. Lunardini, and C. Pen˜a Garay, Phys. Lett. B594, 347 (2004), hep-ph/0402266.
    • [38] One might conceivably eventually confront the current best εμτ limits with an SNS coherent elastic scattering experiment.
    • [39] In principle one might do better with a spectral fit to separate νμ and ν¯e contributions.
    • [40] Note that one might achieve some cancellation of absolute source-flux-related systematic uncertainty by taking a ratio of prompt and delayed fluxes.
    • [41] J. Dorenbosch et al. (CHARM), Phys. Lett. B180, 303 (1986).
    • [42] P. S. Amanik, G. M. Fuller, and B. Grinstein, Astropart. Phys. 24, 160 (2005), hep-ph/0407130.
    • [43] G. G. Raffelt, Phys. Rept. 320, 319 (1999).
    • [44] D. W. Liu et al. (Super-Kamiokande), Phys. Rev. Lett. 93, 021802 (2004), hep-ex/0402015.
    • [45] Z. Daraktchieva et al. (MUNU), Phys. Lett. B615, 153 (2005), hep-ex/0502037.
    • [46] H. T. Wong, Nucl. Phys. Proc. Suppl. 143, 205 (2005), hep-ex/0409003.
    • [47] L. B. Auerbach et al. (LSND), Phys. Rev. D63, 112001 (2001), hep-ex/0101039.
    • [48] P. Vogel and J. Engel, Phys. Rev. D39, 3378 (1989).
    • [49] Note that a neutrino-electron magnetic scattering search can in principle be done at the SNS with low threshold detectors. The νe magnetic scattering cross-section is smaller by a factor of Z2 than for neutrino-nucleus, but there are a factor of Z more electron targets, so the signal is overall a factor of 10 smaller than for νA. This amounts to ∼10 νe magnetic scattering events per ton per year at the SNS above 10 keV, for μν at the current νμ limit. The νe magnetic signal has negligible SM background; however absolute rates are low for realistic target masses and likely to be subject to experimental backgrounds.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from