Languages: English
Types: Preprint
Subjects: Condensed Matter  Mesoscale and Nanoscale Physics
Classified by OpenAIRE into
arxiv: Condensed Matter::Strongly Correlated Electrons, Condensed Matter::Superconductivity
Data from angle resolved photoemission spectroscopy (ARPES) often serves as a smokinggun evidence for the existence of topological materials. It provides the energy dispersion curves of the topological boundary modes which characterize these phases. Unfortunately this method requires a sufficiently regular boundary such that these boundary modes remain sharp in momentum space. Here the seemingly random data obtained from performing ARPES on strongly disordered topological insulators and Weyl semimetals is analyzed theoretically and numerically. Expectedly the disorder averaged ARPES spectra appear featureless. Surprisingly however, correlations in these spectra between different energies and momenta reveal deltasharp features in momentum space. Measuring such correlations using nanoARPES may verify the topological nature of the suggested weak topological insulator ($Bi_{14} Rh_3 I_9$) which thus far was not studied using ARPES due to the rough nature of its metallic surfaces.

The results below are discovered through our pilot algorithms. Let us know how we are doing!
 1 Hasan, M. Z. and Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82(4), 3045{3067 (2010).
 2 Qi, X.L. and Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057{1110, Oct (2011).
 3 Xu, S.Y., Alidoust, N., Belopolski, I., Yuan, Z., Bian, G., Chang, T.R., Zheng, H., Strocov, V. N., Sanchez, D. S., Chang, G., Zhang, C., Mou, D., Wu, Y., Huang, L., Lee, C.C., Huang, S.M., Wang, B., Bansil, A., Jeng, H.T., Neupert, T., Kaminski, A., Lin, H., Jia, S., and Zahid Hasan, M. Discovery of a weyl fermion state with fermi arcs in niobium arsenide. Nat Phys 11(9), 748{754, 09 (2015).
 4 Ilan, R., de Juan, F., and Moore, J. E. Spinbased machzehnder interferometry in topological insulator pn junctions. Phys. Rev. Lett. 115, 096802, Aug (2015).
 5 Wu, Z., Peeters, F. M., and Chang, K. Spin and momentum ltering of electrons on the surface of a topological insulator. Applied Physics Letters 98(16), { (2011).
 6 OjedaAristizabal, C., Fuhrer, M. S., Butch, N. P., Paglione, J., and Appelbaum, I. Towards spin injection from silicon into topological insulators: Schottky barrier between si and bi2se3. Applied Physics Letters 101(2), { (2012).
 7 Pauly, C., Rasche, B., Koepernik, K., Liebmann, M., Pratzer, M., Richter, M., Kellner, J., Eschbach, M., Kaufmann, B., Plucinski, L., Schneider, C. M., Ruck, M., van den Brink, J., and Morgenstern, M. Subnanometrewide electron channels protected by topology. Nat Phys 11(4), 338{343, 04 (2015).
 8 Roushan, P., Seo, J., Parker, C. V., Hor, Y. S., Hsieh, D., Qian, D., Richardella, A., Hasan, M. Z., Cava, R. J., and Yazdani, A. Topological surface states protected from backscattering by chiral spin texture. Nature 460(7259), 1106{1109, 08 (2009).
 9 In the previous Ref. disorder was not strong enough to blur the average ARPES data and the equal energy correlations which were considered. See Supp. Mat. for a detailed comparison..
 10 Fu, L., Kane, C. L., and Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803, Mar (2007).
 11 Ringel, Z., Kraus, Y. E., and Stern, A. Strong side of weak topological insulators. Phys. Rev. B 86, 045102, Jul (2012).
 12 Rasche, B., Isaeva, A., Ruck, M., Borisenko, S., Zabolotnyy, V., Buchner, B., Koepernik, K., Ortix, C., Richter, M., and van den Brink, J. Stacked topological insulator built from bismuthbased graphene sheet analogues. Nat Mater 12(5), 422{425, 05 (2013).
 13 Avila, J., Razado, I., Lorcy, S., Fleurier, R., Pichonat, E., Vignaud, D., Wallart, X., and Asensio, M. C. Exploring electronic structure of oneatom thick polycrystalline graphene lms: A nano angle resolved photoemission study. Scienti c Reports 3, 2439 (2013).
 14 Damascelli, A., Hussain, Z., and Shen, Z.X. Angleresolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473{541, Apr (2003).
 15 Durham, P. J. Theory of photoemission from random alloys. Journal of Physics F: Metal Physics 11(11), 2475 (1981).
 16 Almbladh, C.O. On the theory of photoemission. Physica Scripta 32(4), 341 (1985).
 17 Wu, C., Bernevig, B. A., and Zhang, S.C. Helical liquid and the edge of quantum spin hall systems. Phys. Rev. Lett. 96, 106401, Mar (2006).
 18 Akkermans, E. and Montambaux, G. Mesoscopic Physics of Electrons and Photons. Cambridge University Press, (2007).
 19 Alternatively, rede ne V (x) ! V (x) L 1 R dx0V (x0); Ek;s ! Ek;s + L 1 R dx0V (x0). The extra energy uctuation can be treated straightforwardly in all which follows.
 20 Kane, C. L. and Mele, E. J. Quantum spin hall e ect in graphene. Phys. Rev. Lett. 95, 226801, Nov (2005).
 21 Konig, M., Wiedmann, S., Brune, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi, X.L., and Zhang, S.C. Quantum spin hall insulator state in hgte quantum wells. Science 318(5851), 766{770 (2007).
 22 Given samples x1::M , variance ( 2) is estimated using s = PnM (xn x)2=(M 1), with x = PnM xn=M . V ar[s2] is then 2 4=M 1 and does not depend on the average.

No related research data.

No similar publications.