OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tran, Van-Truong; Saint-Martin, Jérôme; Dollfus, Philippe; Volz, Sebastian (2016)
Languages: English
Types: Preprint
Subjects: Condensed Matter - Mesoscale and Nanoscale Physics
The enhancement of thermoelectric figure of merit ZT requires to either increase the power factor or reduce the phonon conductance, or even both. In graphene, the high phonon thermal conductivity is the main factor limiting the thermoelectric conversion. The common strategy to enhance ZT is therefore to introduce phonon scatterers to suppress the phonon conductance while retaining high electrical conductance and Seebeck coefficient. Although thermoelectric performance is eventually enhanced, all studies based on this strategy show a significant reduction of the electrical conductance, most often leading to a lower electronic performance. In this study we show that appropriate sources of disorder, including isotopes and vacancies at lowest electron density positions, can be used as phonon scatterers to reduce the phonon conductance in graphene ribbons without degrading the electrical conductance, particularly in the low-energy region which is the most important range for device operation. By means of atomistic calculations using semi-empirical Tight-Binding and Force Constant models in combination with Non-Equilibrium Green function formalism, we show that the natural electronic properties of graphene ribbons can be fully preserved while their thermoelectric efficiency is strongly enhanced. For ribbons of width M = 5 dimer lines, room-temperature ZT is enhanced from less than 0.26 for defect-free ribbons to more than 2.5. This study is likely to set the milestones of a new generation of nano-devices with dual electronic, thermoelectric functionalities.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | TransFlexTeg

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok