LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Preprint
Subjects: Condensed Matter - Statistical Mechanics
Due to the time scale problem, rare events are not accessible by straight forward molecular dynamics. The presence of multiple reaction channels complicates the problem even further. The feasibility of the standard free energy based methods relies strongly on the success in finding a proper reaction coordinate. This can be very difficult task in high-dimensional complex systems and even more if several distinct reaction channels exist. Moreover, even if a proper reaction coordinate can be found, ergodic sampling will be a challenge. In this article, we discuss the recent advancements of path sampling methods to tackle this problem. We argue why the path sampling methods, via the transition interface sampling technique, is less sensitive to the choice of reaction coordinate. Moreover, we review a new algorithm, parallel path swapping, that can dramatically improve the ergodic sampling of trajectories for the multiple reaction channel systems.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler, J. Chem. Phys. 108, 1964 (1998).
    • [2] T. S. van Erp, D. Moroni, and P. G. Bolhuis, J. Chem. Phys. 118, 7762 (2003).
    • [3] D. Moroni, T. S. van Erp, and P. G. Bolhuis, Physica A 340, 395 (2004).
    • [4] T. S. van Erp, Ph.D. thesis, Universiteit van Amsterdam, 2003.
    • [5] T. S. van Erp and P. G. Bolhuis, J. Comput. Phys. 205, 157 (2005).
    • [6] C. Dellago, P. G. Bolhuis, and D. Chandler, J. Chem. Phys. 108, 9236 (1998).
    • [7] T. S. V. Erp, T. P. Caremans, C. E. A. Kirschhock, and J. A. Martens, Phys. Chem. Chem. Phys. 9, 1044 (2007).
    • [8] P. G. Bolhuis, Proc. Nat. Acad. Sci. USA 100, 12129 (2003).
    • [9] D. Moroni, P. R. ten Wolde, and P. G. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005).
    • [10] R. Pool and P. G. Bolhuis, J. Chem. Phys. 126, 244703 (2007).
    • [11] T. S. van Erp, Phys. Rev. Lett. 98, 268301 (2007).
    • [12] D. Moroni, P. G. Bolhuis, and T. S. van Erp, J. Chem. Phys. 120, 4055 (2004).
    • [13] R. J. Allen, P. B. Warren, and P. R. ten Wolde, Phys. Rev. Lett. 94, 018104 (2005).
    • [14] T. S. van Erp, J. Chem. Phys. 125, 174106 (2006).
    • [15] P. G. Bolhuis, D. Chandler, C. Dellago, and P. Geissler, Annu. Rev. Phys. Chem. 53, 291 (2002).
    • [16] L. Maragliano, A. Fischer, E. Vanden-Eijnden, and G. Ciccotti, J. Chem. Phys. 125, 024106 (2006).
    • [17] E. Wigner, Trans. Faraday Soc. 34, 29 (1938).
    • [18] H. Eyring, J. Chem. Phys. 3, 107 (1935).
    • [19] J. C. Keck, Discuss. Faraday Soc. 33, 173 (1962).
    • [20] C. H. Bennett, in Algorithms for Chemical Computations, ACS Symposium Series No. 46, edited by R. Christofferson (American Chemical Society, Washington, D.C., 1977).
    • [21] D. Chandler, J. Chem. Phys. 68, 2959 (1978).
    • [22] G. M. Torrie and J. P. Valleau, Chem. Phys. Lett. 28, 578 (1974).
    • [23] E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral, Chem. Phys. Lett. 156, 472 (1989).
    • [24] P. L. Geissler, C. Dellago, and D. Chandler, Phys. Chem. Chem. Phys. 1, 1317 (1999).
    • [25] E. Marinari and G. Parisi, Europhysics Lett. 19, 451 (1992).
    • [26] T. J. H. Vlugt and B. Smit, Phys. Chem. Comm. 2, 1 (2001).
    • [27] T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev. E 47, R44 (1993).
    • [28] T. S. van Erp, S. Cuesta-Lop`ez, J.-G. Hagmann, and M. Peyrard, Phys. Rev. Lett. 95, 218104 (2005).
    • [29] T. S. V. Erp, in progress .
    • [30] Normally, configuration space will be sufficient. However, to ensure the stability of states A and B, the surfaces λA and λB might require explicit kinetic energy dependence (see e.g. [2]).
    • [31] It is a bit more complicated than this. In addition, one needs to avoid the overcounting of successful trajectories that cross the top of the barrier multiple times and each trajectory needs to be weighted with its initial velocity at the top along the direction of the RC [5].
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from