LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Romanenko, A.; Grassellino, A.; Barkov, F.; Suter, A.; Salman, Z.; Prokscha, T. (2013)
Languages: English
Types: Preprint
Subjects: Physics - Accelerator Physics, Condensed Matter - Superconductivity

Classified by OpenAIRE into

arxiv: Condensed Matter::Superconductivity, Physics::Accelerator Physics
Identifiers:doi:10.1063/1.4866013
We investigate "hot" regions with anomalous high field dissipation in bulk niobium superconducting radio frequency cavities for particle accelerators by using low energy muon spin rotation (LE-$\mu$SR) on corresponding cavity cutouts. We demonstrate that superconducting properties at the hot region are well described by the non-local Pippard/BCS model for niobium in the clean limit with a London penetration depth $\lambda_\mathrm{L} = 23 \pm 2$ nm. In contrast, a cutout sample from the 120$^\circ$C baked cavity shows a much larger $\lambda > 100$ nm and a depth dependent mean free path, likely due to gradient in vacancy concentration. We suggest that these vacancies can efficiently trap hydrogen and hence prevent the formation of hydrides responsible for rf losses in hot regions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] H. Padamsee, Supercond. Sci. Tech., 14, R28 (2001).
    • [2] H. Padamsee, RF Superconductivity: Volume II: Science, Technology and Applications (Wiley-VCH Verlag GmbH and Co., KGaA, Weinheim, 2009).
    • [3] E. Morenzoni, F. Kottmann, D. Maden, B. Matthias, M. Meyberg, T. Prokscha, T. Wutzke, and U. Zimmermann, Phys. Rev. Lett., 72, 2793 (1994).
    • [4] E. Morenzoni, T. Prokscha, A. Suter, H. Luetkens, and R. Khasanov, J. Phys.: Cond. Matt., 16, S4583 (2004).
    • [5] A. Suter, E. Morenzoni, R. Khasanov, H. Luetkens, T. Prokscha, and N. Garifianov, Phys. Rev. Lett., 92, 087001 (2004); A. Suter, E. Morenzoni, N. Garifianov, R. Khasanov, E. Kirk, H. Luetkens, T. Prokscha, and M. Horisberger, Phys. Rev. B, 72, 024506 (2005).
    • [6] J. Knobloch, Ph.D. thesis, Cornell University (1997).
    • [7] A. Romanenko and H. Padamsee, Supercond. Sci. Tech., 23, 045008 (2010).
    • [8] A. Romanenko and L. V. Goncharova, Supercond. Sci. Tech., 24, 105017 (2011).
    • [9] A. Grassellino, C. Beard, P. Kolb, R. Laxdal, N. S. Lockyer, D. Longuevergne, and J. E. Sonier, Phys. Rev. ST Accel. Beams, 16, 062002 (2013).
    • [10] B. Aune, R. Bandelmann, D. Bloess, B. Bonin, A. Bosotti, M. Champion, C. Crawford, G. Deppe, B. Dwersteg, D. A. Edwards, H. T. Edwards, M. Ferrario, M. Fouaidy, P.-D. Gall, A. Gamp, A. G¨ossel, J. Graber, D. Hubert, M. Hu¨ning, M. Juillard, T. Junquera, H. Kaiser, G. Kreps, M. Kuchnir, R. Lange, M. Leenen, M. Liepe, L. Lilje, A. Matheisen, W.-D. M¨oller, A. Mosnier, H. Padamsee, C. Pagani, M. Pekeler, H.- B. Peters, O. Peters, D. Proch, K. Rehlich, D. Reschke, H. Safa, T. Schilcher, P. Schmu¨ser, J. Sekutowicz, S. Simrock, W. Singer, M. Tigner, D. Trines, K. Twarowski, G. Weichert, J. Weisend, J. Wojtkiewicz, S. Wolff, and K. Zapfe, Phys. Rev. ST Accel. Beams, 3, 092001 (2000).
    • [11] J. Knobloch, Basic Concepts of Measurements Made on Superconduc Tech. Rep. SRF 910927-07 (Cornell Univ., 1991).
    • [12] H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for Accelerators (John Wiley and Sons, 1998).
    • [13] J. Knobloch, H. Muller, and H. Padamsee, Rev. Sci. Instrum., 65, 3521 (1994).
    • [14] P. Kneisel, in Proceedings of the 9th Workshop on RF Superconductivity, TuP044 (Santa Fe, New Mexico, USA, 1999).
    • [15] A. Romanenko, Surface characterization of niobium cavity sections: understanding the high field Q-slope, Ph.D. thesis, Cornell University (2009).
    • [16] A. Yaouanc and P. D. de Reotier, Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter (Oxford Science Publications, 2011).
    • [17] T. Prokscha, E. Morenzoni, K. Deiters, F. Foroughi, D. George, R. Kobler, A. Suter, and V. Vrankovic, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 595, 317 (2008), ISSN 0168-9002.
    • [18] W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin, Heidelberg, New York, 1991).
    • [19] E. Morenzoni, H. Gluckler, T. Prokscha, R. Khasanov, H. Luetkens, M. Birke, E. M. Forgan, C. Niedermayer, and M. Pleines, Nucl. Inst. Meth. in Phys. Res. B, 192, 254 (2002).
    • [20] M. Grundner and J. Halbritter, J. Appl. Phys., 51, 397 (1979).
    • [21] A. Suter and B. M. Wojek, Physics Procedia, 30, 69 (2012).
    • [22] J. P. Carbotte, Rev. Mod. Phys., 62, 1027 (1990).
    • [23] K. Saito and P. Kneisel, in Proceedings of the 9th Workshop on RF Superconductivity, TuP031 (Santa Fe, New Mexico, USA, 1999) pp. 277-282.
    • [24] R. F. Kiefl, M. D. Hossain, B. M. Wojek, S. R. Dunsiger, G. D. Morris, T. Prokscha, Z. Salman, J. Baglo, D. A. Bonn, R. Liang, W. N. Hardy, A. Suter, and E. Morenzoni, Phys. Rev. B, 81, 180502 (2010).
    • [25] T. J. Jackson, T. M. Riseman, E. M. Forgan, H. Glu¨ckler, T. Prokscha, E. Morenzoni, M. Pleines, C. Niedermayer, G. Schatz, H. Luetkens, and J. Litterst, Phys. Rev. Lett., 84, 4959 (2000).
    • [26] M. Lindstrom, B. Wetton, and R. Kiefl, J. Eng. Math., 1 (2013).
    • [27] S. Casalbuoni, E. A. Knabbe, J. Kotzler, L. Lilje, L. von Sawilski, P. Schmuser, and B. Steffen, Nucl. Inst. Meth. in Phys. Res. A, 538, 45 (2005).
    • [28] L. Lilje, C. Antoine, C. Benvenuti, D. Bloess, J.-P. Charrier, E. Chiaveri, L. Ferreira, R. Losito, A. Matheisen, H. Preis, D. Proch, D. Reschke, H. Safa, P. Schmuser, D. Trines, B. Visentin, and H. Wenninger, Nucl. Inst. Meth. in Phys. Res. A, 516, 213 (2004).
    • [29] A. Romanenko, A. Grassellino, F. Barkov, and J. P. Ozelis, Phys. Rev. ST Accel. Beams, 16, 012001 (2013).
    • [30] A. Romanenko, F. Barkov, L. D. Cooley, and A. Grassellino, Supercond. Sci. Tech., 26, 035003 (2013).
    • [31] A. Romanenko, C. J. Edwardson, P. G. Coleman, and P. J. Simpson, Appl. Phys. Lett., 102, 232601 (2013).
    • [32] R. Tao, A. Romanenko, L. D. Cooley, and R. F. Klie, J. Appl. Phys., 114, 044306 (2013).
    • [33] F. Barkov, A. Romanenko, Y. Trenikhina, and A. Grassellino, J. Appl. Phys., 114, 164906 (2013).
    • [34] T. Proslier, J. F. Zasadzinski, L. Cooley, C. Antoine, J. Moore, J. Norem, M. Pellin, and K. E. Gray, Appl. Phys. Lett., 92, 212505 (2008).
    • o t s d0.02 e z i l
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from