LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Barbour, A. D.; Röllin, Adrian; Ross, Nathan (2017)
Languages: English
Types: Preprint
Subjects: Mathematics - Probability
We provide a general result for bounding the difference between point probabilities of integer supported distributions and the translated Poisson distribution, a convenient alternative to the discretized normal. We illustrate our theorem in the context of the Hoeffding combinatorial central limit theorem with integer valued summands, of the number of isolated vertices in an Erd\H{o}s-R\'enyi random graph, and of the Curie-Weiss model of magnetism, where we provide optimal or near optimal rates of convergence in the local limit metric. In the Hoeffding example, even the discrete normal approximation bounds seem to be new. The general result follows from Stein's method, and requires a new bound on the Stein solution for the Poisson distribution, which is of general interest.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • R. Arratia and P. Baxendale (2015). Bounded size bias coupling: a Gamma function bound, and universal Dickman-function behavior. Probab. Theory Related Fields, 162(3-4):411- 429.
    • A. D. Barbour (1980). Equilibrium distributions for Markov population processes. Adv. Appl. Prob., 12:591-614.
    • A. D. Barbour and A. Xia (1999). Poisson perturbations. ESAIM Probab. Statist., 3:131-150.
    • A. D. Barbour, L. Holst and S. Janson (1992). Poisson approximation, volume 2 of Oxford Studies in Probability. The Clarendon Press Oxford University Press, New York. Oxford Science Publications.
    • A. D. Barbour, M. Karon´ski and A. Rucin´ski (1989). A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B 47, 125-145.
    • E. Bolthausen (1984). An estimate of the remainder in a combinatorial central limit theorem. Z. Wahrsch. Verw. Gebiete, 66(3):379-386.
    • S. Chatterjee (2007). Stein's method for concentration inequalities. Probab. Theory Related Fields, 138(1-2):305-321.
    • S. Chatterjee and P. S. Dey (2010). Applications of Stein's method for concentration inequalities. Ann. Probab., 38(6):2443-2485.
    • S. Chatterjee and Q.-M. Shao (2011). Nonnormal approximation by Stein's method of exchangeable pairs with application to the Curie-Weiss model. Ann. Appl. Probab., 21(2):464-483.
    • L. H. Y. Chen and X. Fang (2015). On the error bound in a combinatorial central limit theorem. Bernoulli, 21(1):335-359.
    • L. H. Y. Chen, X. Fang and Q.-M. Shao (2013). From Stein identities to moderate deviations. Ann. Probab., 41(1):262-293.
    • L. H. Y. Chen and A. Ro¨llin (2010). Stein couplings for normal approximation. Preprint http://arxiv.org/abs/1003.6039v2.
    • A. Dembo and A. Montanari (2010). Gibbs measures and phase transitions on sparse random graphs. Braz. J. Probab. Stat., 24(2):137-211.
    • P. Eichelsbacher and M. Lo¨we (2010). Stein's method for dependent random variables occurring in statistical mechanics. Electron. J. Probab., 15:no. 30, 962-988.
    • R. S. Ellis (2006). Entropy, large deviations, and statistical mechanics. Classics in Mathematics. Springer-Verlag, Berlin. Reprint of the 1985 original.
    • R. S. Ellis and C. M. Newman (1978). Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. Wahrsch. Verw. Gebiete, 44(2):117-139.
    • R. S. Ellis, C. M. Newman and J. S. Rosen (1980). Limit theorems for sums of dependent random variables occurring in statistical mechanics. II. Conditioning, multiple phases, and metastability. Z. Wahrsch. Verw. Gebiete, 51(2):153-169.
    • C. G. Esseen (1945). Fourier analysis of distribution functions. A mathematical analysis of the Laplace-Gaussian law. Acta Math., 77:1-125.
    • X. Fang (2014). Discretized normal approximation by Stein's method. Bernoulli, 20(3):1404- 1431.
    • L. Goldstein (2005). Berry-Esseen bounds for combinatorial central limit theorems and pattern occurrences, using zero and size biasing. J. Appl. Probab., 42(3):661-683.
    • L. Goldstein (2013). A Berry-Esseen bound with applications to vertex degree counts in the Erd˝os-R´enyi random graph Ann. Appl. Probab., 23(2):617-636.
    • L. Goldstein and U¨. I¸slak (2014). Concentration inequalities via zero bias couplings. Statist. Probab. Lett., 86:17-23.
    • L. Goldstein and A. Xia (2006). Zero biasing and a discrete central limit theorem. Ann. Probab., 34(5):1782-1806.
    • W. Hoeffding (1951). A combinatorial central limit theorem. Ann. Math. Statistics, 22:558- 566.
    • W. Kordecki (1990). Normal approximation and isolated vertices in random graphs. In Random graphs '87 (Poznan´, 1987), pages 131-139. Wiley, Chichester.
    • K. Krokowski, A. Reichenbachs and C. Th¨ale (2017). Discrete Malliavin-Stein method: Berry-Esseen bounds for random graphs and percolation. Ann. Probab. 45(2):1071-1109.
    • D. R. McDonald (1979) On local limit theorem for integer valued random variables. Teor. Veroyatn. Primenen., 24:607-614.
    • V. V. Petrov (1975). Sums of independent random variables. Springer, Berlin.
    • A. Ro¨llin (2005). Approximation of sums of conditionally independent variables by the translated Poisson distribution Bernoulli., 11(6):1115-1128.
    • A. Ro¨llin (2007). Translated Poisson approximation using exchangeable pair couplings. Ann. Appl. Probab., 17(5-6):1596-1614.
    • A. Ro¨llin (2008). Symmetric and centered binomial approximation of sums of locally dependent random variables. Electron. J. Probab., 13(24):756-776.
    • A. Ro¨llin and N. Ross (2015). Local limit theorems via Landau-Kolmogorov inequalities. Bernoulli, 21(2):851-880.
    • A. Wald and J. Wolfowitz (1944). Statistical tests based on permutations of the observations. Ann. Math. Statistics, 15:358-372.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok