Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Dartois, E.; Augé, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J. J.; Kamalou, O.; Lv, X. Y.; Rothard, H.; da Silveira, E. F.; Thomas, J. C. (2015)
Languages: English
Types: Preprint
Subjects: Astrophysics - Earth and Planetary Astrophysics, Astrophysics - Astrophysics of Galaxies

Classified by OpenAIRE into

arxiv: Astrophysics::Earth and Planetary Astrophysics, Astrophysics::High Energy Astrophysical Phenomena, Physics::Atmospheric and Oceanic Physics, Physics::Geophysics, Condensed Matter::Materials Science
Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baragiola, R. A., Loeffler, M. J., Raut, U., Vidal, R. A., & Wilson, C. D. 2005, Radiation Physics and Chemistry, 72, 187
    • Baratta, G. A., Spinella, F., Leto, G., Strazzulla, G., & Foti, G. 1991, A&A, 252, 421 i
    • Brooke, T. Y., Sellgren, K., & Smith, R. G. 1996, ApJ, 459, 209
    • Brooke, T. Y., Sellgren, K., & Geballe, T. R. 1999, ApJ, 517, 883
    • Brown, W. L., Augustyniak, W. M., Marcantonio, K. J., et al. 1984, Nuclear Instruments and Methods in Physics Research B, 1, 307
    • Dartois, E., d'Hendecourt, L., Thi, W., Pontoppidan, K. M., & van Dishoeck, E. F. 2002, A&A, 394, 1057
    • Dartois, E., Ding, J. J., de Barros, A. L. tF.,et al. 2013, A&A, 557, A97
    • Dartois, E. 2005, Space Sci. Rev., 119, 293
    • Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tielens, A. G. G. M. 2004, ApJS, 151, 35
    • Kouchi, A., & Kuroda, T. 1990, nature, 344, 134.
    • Kulikov, M. Y., Feigin, A. M., Ignatov, S. K., et al. 2010, Atmospheric Chemistry & Physics Discussions, 10, 22653
    • Lepault, J., Freeman, R. & Dubochet, J., 1983. J. Microsc. 132, RP3-RP4.
    • Leto, G., & Baratta, G. A. 2003, A&A, 397, 7
    • Leto, G., Gomis, O., & Strazzulla, G. 2005, Memorie della Societa Astronomica Italiana Supplementi, 6, 57
    • Lombaert, R., Decin, L., de Koter, A., et al. 2013, A&A, 554, A142
    • Maldoni, M. M., Egan, M. P., Smith, R. G., Robinson, G., & Wright, C. M. 2003, MNRAS, 345, 912 A&A, 345, 181 n
    • Malfait, K., Waelkens, C., Bouwman, J., de Koter, A., & Waters, L. B. F. M. 1999,
    • Meyer, A. W., Smith, R. G., Charnley, S. B., & Pendleton, Y. J. 1998, AJ, 115, 2509 d
    • Molinari, S., Ceccarelli, C., White, G. J., et al. 1999, ApJ, 521, L71
    • Moore, M. H., & Hudson, R. L. 2000, Icarus, 145, 282 e
    • Moore, M. H., & Hudson, R. L. 1992, ApJ, 401, 353
    • O¨berg, K. I., Linnartz, H., Visser, R., & van Dishoeck, E. F. 2009, ApJ, 693, 1209
    • Shen, C. J., Greenberg, J. M., Schutte, W. A., & van Dishoeck, E. F. 2004, A&A, 415, 203 c
    • Soifer, B. T., Willner, S. P., Rudy, R. J., & Capps, R. W. 1981, ApJ, 250, 631
    • Strazzulla, G., Baratta, G. A., Leto, G., & Foti, G. 1992, EPL (Europhysics Letters), 18, 517
    • Sylvester, R. J., Kemper, F., Barlow, M. J., et al. 1999, A&A, 352, 587
    • Webber, W. R., & Yushak, S. M. 1983, ApJ, 275, 391
    • Westley, M. S., Baragiola, R. A., Johnson, R. E., & Baratta, G. A. 1995, nature, 373, 405
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok