LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zeng, Li; Jacobsen, Stein B.; Sasselov, Dimitar D.; Vanderburg, Andrew (2018)
Languages: English
Types: Preprint
Subjects: Astrophysics - Earth and Planetary Astrophysics

Classified by OpenAIRE into

arxiv: Astrophysics::Earth and Planetary Astrophysics, Astrophysics::Galaxy Astrophysics, Physics::Geophysics, Physics::Space Physics
Applying the survival function analysis to the planet radius distribution of the Kepler exoplanet candidates, we have identified two natural divisions of planet radius at 4 Earth radii and 10 Earth radii. These divisions place constraints on planet formation and interior structure model. The division at 4 Earth radii separates small exoplanets from large exoplanets above. When combined with the recently-discovered radius gap at 2 Earth radii, it supports the treatment of planets 2-4 Earth radii as a separate group, likely water worlds. Thus, for planets around solar-type FGK main-sequence stars, we argue that 2 Earth radii is the separation between water-poor and water-rich planets, and 4 Earth radii is the separation between gas-poor and gas-rich planets. We confirm that the slope of survival function in between 4 and 10 Earth radii to be shallower compared to either ends, indicating a relative paucity of planets in between 4-10 Earth radii, namely, the sub-Saturnian desert there. We name them transitional planets, as they form a bridge between the gas-poor small planets and gas giants. Accordingly, we propose the following classification scheme: (<2 Earth radii) rocky planets, (2-4 Earth radii) water worlds, (4-10 Earth radii) transitional planets, and (>10 Earth radii) gas giants.

Share - Bookmark

Cite this article

Collected from