Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nguyen, Vinh; Kabir, Md Yasin; Dang, Tommy (2017)
Languages: English
Types: Preprint
Subjects: Quantitative Biology - Quantitative Methods, Computer Science - Information Retrieval
Interactive visualization tools are highly desirable to biologist and cancer researchers to explore the complex structures, detect patterns and find out the relationships among bio-molecules responsible for a cancer type. A pathway contains various bio-molecules in different layers of the cell which is responsible for specific cancer type. Researchers are highly interested in understanding the relationships among the proteins of different pathways and furthermore want to know how those proteins are interacting in different pathways for various cancer types. Biologists find it useful to merge the data of different cancer studies in a single network and see the relationships among the different proteins which can help them detect the common proteins in cancer studies and hence reveal the pattern of interactions of those proteins. We introduce the CancerLinker, a visual analytic tool that helps researchers explore cancer study interaction network. Twenty-six cancer studies are merged to explore pathway data and bio-molecules relationships that can provide the answers to some significant questions which are helpful in cancer research. The CancerLinker also helps biologists explore the critical mutated proteins in multiple cancer studies. A bubble graph is constructed to visualize common protein based on its frequency and biological assemblies. Parallel coordinates highlight patterns of patient profiles (obtained from cBioportal by WebAPI services) on different attributes for a specified cancer study
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from