LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Montgomery, M. M.; Martin, E. L. (2010)
Languages: English
Types: Preprint
Subjects: Astrophysics - Solar and Stellar Astrophysics

Classified by OpenAIRE into

arxiv: Astrophysics::Galaxy Astrophysics, Astrophysics::Earth and Planetary Astrophysics, Astrophysics::Solar and Stellar Astrophysics
Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through the disk's center of mass. The disk responds to lift by pitching around the disk's line of nodes. If the gas stream flow ebbs, then lift also ebbs and the disk attempts to return to its original orientation. To first approximation, lift does not depend on magnetic fields or radiation sources but does depend on mass and the surface area of the disk. Also, for disk tilt to be initiated, a minimum mass transfer rate must be exceeded. For example, a $10^{-11}M_{\odot}$ disk around a 0.8$M_{\odot}$ compact central object requires a mass transfer rate greater than $\sim10^{-13}$M$_{\odot}$yr$^{-1}$, a value well below known mass transfer rates in Cataclysmic Variable Dwarf Novae systems that retrogradely precess and that exhibit negative superhumps in their light curves and a value well below mass transfer rates in protostellar forming systems.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [3] Barrett P., O'Donoghue D., & Warner B., 1988, MNRAS, 233, 759
    • [4] Barrera L.H. & Vogt N., 1989, A&A, 220, 99
    • [6] Clarke C.J. & Pringle J.E., 1993, MNRAS, 261, 190
    • [7] Coffey D., Bacciotti F., & Podio L., 2008, ApJ, 689, 1112
    • [8] Frank J., King A.R., & Lasota J.-P., 1987, A&A, 178, 137
    • [9] Hall S.M., Clarke C.J., & Pringle J.E., 1996, MNRAS, 278, 303
    • [10] Hartmann L., Calvet N., Gullbring E., & D'Alessio P., 1998, ApJ, 495, 385
    • [11] Hobbs A. & Nayakshin S., 2009, MNRAS, 394, 191
    • [12] Ida S. & Lin D.N.C., 2008, ApJ, 685, 584
    • [13] Jiang I.-G. & Binney J., MNRAS, 303, L7
    • [14] Katz J.I., 1973, Nature Phys. Sci., 246, 87
    • [15] Kumar S., 1986, MNRAS, 223, 225
    • [16] Kumar S., 1989, in Theory of Accretion Disks, eds. F. Meyer, W.J. Duschl, J. Frank, & E. MeyerHofmeister, Kluwer, Dordrecht, p. 297
    • [20] Larwood J., Nelson R.P., Papaloizou J.C.B., & Terquem C., 1996, MNRAS, 282, 597
    • [21] Larwood J. & Papaloizou J.C.B., 1997, MNRAS, 285, 288
    • [22] Lense J. & Thirring H., 1918, Physikalische Zeitschrift, 19, 156
    • [23] Lipunov V.M. & Shakura N.I. 1980, Soviet Astron. Lett., 6, 14
    • [24] Lubow S.H. & Shu F.H., 1975, ApJ, 198, 383
    • [25] Lubow S.H., 1992, ApJ, 398, 525
    • [26] Lubow S.H. & Ogilivie G.I., 2000, ApJ, 538, 326
    • [27] Lubow S.H. & Pringle J.E., 1993, ApJ, 409, 360
    • [28] Lubow S.H. & Pringle J.E., 2010, MNRAS, 402, L6
    • [29] Maloney P.R., Begelman M.C., & Pringle J.E., 1996, ApJ, 472, 582
    • [30] Maloney P.R. & Begelman M.C., 1997a, ApJL, 491, 43
    • [31] Maloney P.R. & Begelman M.C., 1997b, in IAU Colloq. 163, Accretion Phenomena and Related Outfows, ed. D. Wickramasinghe, L. Ferrario, & G. Bicknell (San Francisco: ASP), 311
    • [32] Montgomery M.M., 2009a, ApJ, 705, 603
    • [33] Montgomery M.M., 2009b, MNRAS, 394, 1897
    • [35] Murray J.R. & Armitage P.J., 1998, MNRAS, 300, 561
    • [36] Papaloizou J.C.B. & Terquem C., 1995, MNRAS, 274, 987
    • [37] Patterson J., Kemp J., Richman H.R., Skillman D.R., Vanmunster T., Jensen L., Buckley D.A.H., O'Donoghue D., & Kramer R., 1998, PASP, 110, 415
    • [38] Pringle J.E., 1996, MNRAS, 281, 357
    • [39] Pringle J.E., 1997, MNRAS, 292, 136
    • [40] Quillen A.C., 2001, ApJ, 563, 313
    • [41] Retter A., Chou Y., Bedding T.R., & Naylor T., 2002, 330, L37
    • [42] Roberts W.J., 1974, ApJ, 187, 575
    • [43] Schandl S. & Meyer F., 1994, A&A, 289, 149S
    • [44] Schandl S., 1996, A&A, 307, 95S
    • [45] Shu F., Najita J., Ostriker E., Wilkin F., Ruden S., & Lizano S., 1994, ApJ, 429, 781
    • [46] Smak J., 2009, AcA, 59, 419
    • [47] Telesco C.M., Fisher R.S., Wyatt M.C., Dermott S.F., Kehoe T.J.J., Novotny S., Marinas N., Radomski J.T., Packham C., De Buizer J., Hayward T.L., 2005, Nature, 433, 133
    • [48] Terquem C., Papaloizou J.C.B., & Nelson R.P., 1999, Astrophysical disks ASP Conference Series, Vol. 160, 71
    • [49] Terquem C. & Papaloizou J.C.B., 2000, A&A, 360, 1031
    • [50] Warner B., 2003, Cataclysmic Variable Stars (New York: Cambridge U. Press)
    • [51] Wijers R.A.M.J. & Pringle J.E., 1999, MNRAS, 308, 207
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from