Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ceresole, A.; D'Auria, R.; Regge, T. (1993)
Languages: English
Types: Preprint
Subjects: High Energy Physics - Theory

Classified by OpenAIRE into

arxiv: Mathematics::Algebraic Geometry, Mathematics::Symplectic Geometry
We present an efficient method for computing the duality group $\Gamma$ of the moduli space \cM for strings compactified on a Calabi-Yau manifold described by a two-moduli deformation of the quintic polynomial immersed in $\CP(4)$, $\cW={1\over5}(\iy_1^5+\cdots+\iy_5^5)-a\,\iy_4^3 \iy_5^2 -b\, \iy_4^2 \iy_5^3$. We show that $\Gamma$ is given by a $3$--dimensional representation of a central extension of $B_5$, the braid group on five strands.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. K. Kikkawa and M. Yamasaki, Phys. Lett. 149B (1984) 357; N. Sakai and L. Senda, Progr. Theor. Phys. 75 (1986) 692; V.P. Nair, A. Shapere, A. Strominger and F. Wilczek, Nucl. Phys. B287 (1987) 402; A. Giveon, E. Rabinovici and G. Veneziano, Nucl. Phys. B322 (1989) 167; A. Shapere and F. Wilczek, Nucl. Phys. B320 (1989) 167; M. Dine, P. Huet and N. Seiberg, Nucl. Phys. B322 (1989) 301; J. Molera and B. Ovrut, Phys. Rev. D40 (1989) 1150; J. Lauer, J. Maas and H.P. Nilles, Phys. Lett. B226 (1989) 251 and Nucl. Phys. B351 (1991) 353; W. Lerche, D. Lu¨st and N.P. Warner, Phys. Lett. B231 (1989) 418; M. Duff, Nucl. Phys. B335 (1990) 610; A. Giveon and M. Porrati, Phys. Lett. B246 (1990) 54 and Nucl. Phys. B355 (1991) 422; Giveon, N. Malkin and E. Rabinovici, Phys. Lett. B238 (1990)
    • 4. D. Morrison, Essays on Mirror manifolds, S.T.Yau Editor, Intenational Press (1992); A. Font, Nucl. Phys B391 (1993) 358; A. Klemm and S. Theisen, Nucl Phys. B389 (1993) 153;
    • 5. P.Candelas, private communication and talk held at ”Eloisatron Project”, Erice , December 1992; P. Candelas, X. De La Ossa, A. Font, S. Katz and D. R. Morrison, ”Mirror Symmetry for Two Parameter Models-I”, CERNTH.6884/93, in preparation;
    • 6. R. D'Auria and S. Ferrara, “ String Quantum Symmetries From PicardFuchs Equations And Their Monodromy”, CERN-TH.6777/93 , POLFISTH.24/93;
    • 7. T. Regge, “The Fundamental Group Of Poincar´e And The Analytic Properties Of Feynman Relativistic Amplitudes” Nobel Symposium Series VIII (1968); G. Ponzano and T. Regge, Proceedings of the Varna Conference (1968);
    • 8. G. Ponzano, T. Regge, E. R. Speer and M. J. Westwater, Commun. Math. Phys. 15 (1969) 83 and Commun. Math. Phys. 18 (1970) 1;
    • 9. See O. Zariski, “Algebraic Surfaces”, II ed., Springer- Verlag (1971);
    • 11. E. R. van Kampen, Amer. J. Math. 55 (1933) 255;
    • 12. A. Strominger, Commun. Math. Phys. 133 (1990) 163; L. Castellani, R. D'Auria and S. Ferrara, Phys. Lett. B241 (1990) 57; L. Castellani, R. D'Auria and S. Ferrara, Class. Quant. Grav. 1 (1990) 317;
    • 13. A. Ceresole, R. D'Auria, S. Ferrara, W. Lerche and J. Louis, Int.Jou.Mod.Phys. A8 (1993) 79;
    • 14. L.J. Dixon, V.S. Kaplunovsky and J. Louis, Nucl. Phys. B329 (1990) 27;
    • 15. E. Cremmer and A. Van Proyen, Class. Quantum Grav. 2 (1985) 445
    • 16. A. Cadavid and S. Ferrara, Phys. Lett. B267 (1991) 193;
    • 17. W. Lerche, D. Smit and N. Warner, Nucl. Phys. B372 (1992) 87;
    • 18. V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps Vol bf II (Birkh¨auser).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from