LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mavromatos, Nick E. (2010)
Languages: English
Types: Unknown
Subjects: General Relativity and Quantum Cosmology, High Energy Physics - Phenomenology, Particle Physics - Phenomenology, High Energy Physics - Theory
In Ref. [1] (by J. Alexandre) a minimal extension of (3+1)-dimensional Quantum Electrodynamics has been proposed, which includes Lorentz-Violation (LV) in the form of higher-(spatial)-derivative isotropic terms in the gauge sector, suppressed by a mass scale $M$. The model can lead to dynamical mass generation for charged fermions. In this article I elaborate further on this idea and I attempt to connect it to specific quantum-gravity models, inspired from string/brane theory. Specifically, in the first part of the article, I comment briefly on the gauge dependence of the dynamical mass generation in the approximations of [1], and I propose a possible avenue for obtaining the true gauge-parameter-independent value of the mass by means of Pinch Technique argumentations. In the second part of the work I embed the LV QED model into multibrane world scenarios with a view to provide a geometrical way of enhancing the dynamical mass to phenomenologically realistic values by means of bulk warp metric factors, in an (inverse) Randall-Sundrum hierarchy. Finally in the third part of this note, I demonstrate that such Lorentz Violating QED models may represent parts of a low-energy effective action (of Finsler-Born-Infeld type) of open strings propagating in quantum D0-particle stochastic space-time foam backgrounds, which are viewed as consistent quantum gravity configurations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] J. Alexandre, arXiv:1009.5834 [hep-ph].
    • [2] D. Colladay and V. A. Kostelecky, Phys. Rev. D 55, 6760 (1997) [arXiv:hep-ph/9703464]; V. A. Kostelecky and S. Samuel, Phys. Rev. D 40, 1886 (1989); V. A. Kostelecky, arXiv:0802.0581 [gr-qc], and references therein.
    • [3] P. Horava, Phys. Rev. D 79, 084008 (2009) [arXiv:0901.3775 [hep-th]].
    • [4] see for instance, T. P. Sotiriou, M. Visser and S. Weinfurtner, Phys. Rev. Lett. 102, 251601 (2009) [arXiv:0904.4464 [hep-th]].
    • [5] M. Pospelov and Y. Shang, arXiv:1010.5249 [hep-th].
    • [6] M. Visser, Phys. Rev. D 80, 025011 (2009) [arXiv:0902.0590 [hep-th]] and references therein.
    • [7] See, for instance: D. Anselmi, Eur. Phys. J. C 65, 523 (2010) [arXiv:0904.1849 [hep-ph]]; D. Anselmi and E. Ciuffoli, Phys. Rev. D 81, 085043 (2010) [arXiv:1002.2704 [hep-ph]]; J. Alexandre, K. Farakos, P. Pasipoularides and A. Tsapalis, Phys. Rev. D 81, 045002 (2010) [arXiv:0909.3719 [hep-th]]; J. Alexandre, N. E. Mavromatos and D. Yawitch, arXiv:1009.4811 [hep-ph].
    • [8] J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Gen. Rel. Grav. 32, 127 (2000); Phys. Rev. D 61, 027503 (2000); Phys. Rev. D 62, 084019 (2000).
    • [9] J. R. Ellis, N. E. Mavromatos and M. Westmuckett, Phys. Rev. D 70, 044036 (2004); ibid. 71, 106006 (2005) .
    • [10] J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Phys. Lett. B 665, 412 (2008); arXiv:0912.3428 [astro-ph.CO]; J. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Phys. Lett. B 694, 61 (2010) [arXiv:1004.4167 [astroph.HE]].
    • [11] T. Li, N. E. Mavromatos, D. V. Nanopoulos and D. Xie, Phys. Lett. B 679, 407 (2009).
    • [12] For a recent review on this topic see: N. E. Mavromatos, arXiv:1010.5354 [hepth]: invited review to appear in Int. J. Mod. Phys. A, and references therein.
    • [13] N. E. Mavromatos, S. Sarkar and A. Vergou, arXiv:1009.2880 [hep-th].
    • [14] N. E. Mavromatos and R. J. Szabo, Phys. Rev. D 59, 104018 (1999) [arXiv:hep-th/9808124]; see also: J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Mod. Phys. Lett. A 10, 1685 (1995) [arXiv:hep-th/9503162]; G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Mod. Phys. Lett. A 12, 2029 (1997) [arXiv:hep-th/9701144].
    • [15] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982); J. M. Cornwall and J. Papavassiliou, Phys. Rev. D 40, 3474 (1989).
    • [16] D. Binosi and J. Papavassiliou, Phys. Rept. 479, 1 (2009) [arXiv:0909.2536 [hep-ph]] and references therein.
    • [17] V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, Phys. Rev. D 52 (1995) 4747 [arXiv:hep-ph/9501304].
    • [18] V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, Found. Phys. 30, 349 (2000) and references therein.
    • [19] V. A. Miransky, “Dynamical symmetry breaking in quantum field theories,” Singapore, Singapore: World Scientific (1993) 533 p
    • [20] N. E. Mavromatos, J. Papavassiliou, Recent. Res. Devel. Phys. 5, 369-415 (TRN, India 2004) [arXiv:cond-mat/0311421], invited article.
    • [21] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [arXiv:hep-ph/9905221].
    • [22] N. E. Mavromatos and J. Rizos, Int. J. Mod. Phys. A 18, 57 (2003) [arXiv:hep-th/0205299]; Phys. Rev. D 62, 124004 (2000) [arXiv:hep-th/0008074].
    • [23] For a very partial but somewhat relevant works to our discussion here see: V. Gurarie, Nucl. Phys. B 410, 535 (1993) [arXiv:hep-th/9303160]; J. S. Caux, I. I. Kogan and A. M. Tsvelik, Nucl. Phys. B 466, 444 (1996) [arXiv:hep-th/9511134]; I. I. Kogan and N. E. Mavromatos, Phys. Lett. B
    • [24] I. I. Kogan, N. E. Mavromatos and J. F. Wheater, Phys. Lett. B 387, 483 (1996); J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Int. J. Mod. Phys. A 13, 1059 (1998).
    • [26] N. Seiberg and E. Witten, JHEP 9909, 032 (1999) [arXiv:hep-th/9908142].
    • [27] N. Seiberg, L. Susskind and N. Toumbas, JHEP 0006, 044 (2000).
    • [28] N.E. Mavromatos and Sarben Sarkar, Physical Review D 72, 065016 (2005) [arXiv:hep-th/0506242].
    • [29] see, for instance: A. A. Tseytlin, arXiv:hep-th/9908105.
    • [30] N. E. Mavromatos, R. J. Szabo, JHEP 0301, 041 (2003). [hep-th/0207273]; JHEP 0110, 027 (2001). [hep-th/0106259].
    • [31] See, for example, for a lattice attempt to address this issue: M. Gockeler, R. Horsley, V. Linke et al., Phys. Rev. Lett. 80, 4119-4122 (1998). [hep-th/9712244].
    • [32] See, for instance: C. Giunti, A. Studenikin, Phys. Atom. Nucl. 72, 2089-2125 (2009). [arXiv:0812.3646 [hep-ph]], and references therein.
    • [33] J. Bernabeu, N. E. Mavromatos, J. Papavassiliou, Phys. Rev. Lett. 92, 131601 (2004). [hep-ph/0310180]; J. Bernabeu, N. E. Mavromatos, S. Sarkar, Phys. Rev. D74, 045014 (2006). [hep-th/0606137]; N. E. Mavromatos, Found. Phys. 40, 917-960 (2010). [arXiv:0906.2712 [hep-th]] and references therein.
    • [34] G. Barenboim, N. E. Mavromatos, JHEP 0501, 034 (2005). [hep-ph/0404014]; Phys. Rev. D70, 093015 (2004). [hep-ph/0406035]; G. Barenboim, N. E. Mavromatos, S. Sarkar et al., Nucl. Phys. B758, 90-111 (2006). [hep-ph/0603028].
    • [35] J. M. Cornwall, R. Jackiw and E. Tomboulis, Phys. Rev. D 10, 2428 (1974); W. J. Marciano and H. Pagels, Phys. Rept. 36, 137 (1978).
    • [36] N. E. Mavromatos and J. Papavassiliou, Phys. Rev. D 60, 125008 (1999).
    • [37] V. Sauli, JHEP 0302, 001 (2003) [arXiv:hep-ph/0209046].
    • [38] D. Binosi and J. Papavassiliou, Phys. Rev. D 66, 111901 (2002) [arXiv:hep-ph/0208189]; J. Phys. G 30, 203 (2004) [arXiv:hep-ph/0301096].
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article