Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kiefer, Claus; Sandhoefer, Barbara (2008)
Languages: English
Types: Preprint

Classified by OpenAIRE into

arxiv: General Relativity and Quantum Cosmology
We give an introduction into quantum cosmology with emphasis on its conceptual parts. After a general motivation we review the formalism of canonical quantum gravity on which discussions of quantum cosmology are usually based. We then present the minisuperspace Wheeler--DeWitt equation and elaborate on the problem of time, the imposition of boundary conditions, the semiclassical approximation, the origin of irreversibility, and singularity avoidance. Restriction is made to quantum geometrodynamics; loop quantum gravity and string theory are discussed in other contributions to this volume.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu (2003): Decoherence and the Appearance of a Classical World in Quantum Theory, second edition (Springer, Berlin).
    • 2. C. Kiefer (2007): Quantum Gravity, second edition (Oxford University Press, Oxford).
    • 3. C. Kiefer (2006): Quantum cosmology: expectations and results. Annalen der Physik 15, 316-325.
    • 4. D. H. Coule (2005): Quantum cosmological models. Class. Quantum Grav. 22, R125-166.
    • 5. D. L. Wiltshire (1996): An introduction to quantum cosmology. In: Cosmology: The physics of the Universe, edited by B. Robson, N. Visvanathon, and W. S. Woolcock (World Scientific, Singapore), pp. 473-531.
    • 6. J. J. Halliwell (1991): Introductory lectures on quantum cosmology. In: Quantum Cosmology and Baby Universes, edited by S. Coleman, J. B. Hartle, T. Piran, and S. Weinberg (World Scientific, Singapore), pp. 159-243.
    • 7. B. S. DeWitt (1967): Quantum theory of Gravity. I. The canonical theory. Phys. Rev. 160, 1113-1148.
    • 8. C. W. Misner (1972): Minisuperspace. In: Magic without magic, edited by J. R. Klauder (Freeman, San Francisco), pp. 441-473.
    • 9. M. P. Ryan (1972): Hamiltonian Cosmology. Lecture Notes in Physics 13 (Springer, Berlin).
    • 10. J. B. Hartle and S. W. Hawking (1983): Wave function of the Universe. Phys. Rev. D 28, 2960-2975.
    • 11. A. Vilenkin (1982): Creation of universes from nothing. Phys. Lett. B 117, 25-28.
    • 12. A. Vilenkin (2003): Quantum cosmology and eternal inflation. In: The future of theoretical physics and cosmology, edited by G. W. Gibbons et al. (Cambridge University Press, Cambridge), pp. 649-666.
    • 13. H. D. Conradi and H. D. Zeh (1991): Quantum cosmology as an initial value problem. Phys. Lett. A 154, 321-326.
    • 14. A. O. Barvinsky (2001): Quantum cosmology at the turn of millenium; gr-qc/0101046.
    • 15. M. Gasperini and G. Veneziano (2003): The pre-big bang scenario in string cosmology. Phys. Rep. 373, 1-212; M. P. Da¸browski and C. Kiefer (1997): Boundary conditions in quantum string cosmology. Phys. Lett. B 397, 185-92.
    • 16. P. V. Moniz (1996): Supersymmetric quantum cosmology - shaken, not stirred. Int. J. Mod. Phys. A 11, 4321-4382.
    • 17. A. Ashtekar and M. Bojowald, contribution to this volume.
    • 18. D. Giulini and C. Kiefer (2007): The canonical approach to quantum gravity - general ideas and geometrodynamics. In: Approaches to fundamental physics - An assessment of current theoretical ideas, edited by E. Seiler and I.-O. Stamatescu (Springer, Berlin), pp. 131-150.
    • 19. R. Arnowitt, S. Deser, and C. W. Misner (1962): The dynamics of general relativity. In: Gravitation: an introduction to current research, edited by L. Witten (Wiley, New York), pp. 227-265.
    • 20. C. Rovelli (2004): Quantum Gravity (Cambridge University Press, Cambridge).
    • 21. J. Klauder (2006): Fundamentals of quantum gravity; gr-qc/0612168.
    • 22. C. J. Isham (1992): Canonical quantum gravity and the problem of time; gr-qc/9210011.
    • 23. K. Kuchaˇr (1992): Time and interpretations of quantum gravity. In: Proc. 4th Canadian Conf. General Relativity and Relativistic Astrophysics, edited by G. Kunstatter et al. (World Scientific, Singapore), pp. 211-314.
    • 24. C. G. Torre (1993): Is general relativity an 'already parametrized' theory? Phys. Rev. D 46, 3231-3234.
    • 25. R. F. Baierlein, D. H. Sharp, and J. A. Wheeler (1962): Three-dimensional geometry as carrier of information about time. Phys. Rev. 126, 1864-1865.
    • 26. H. D. Zeh (1988): Time in quantum gravity. Phys. Lett. A 126, 311-317.
    • 27. C. Kiefer (1989): Non-minimally coupled scalar fields and the initial value problem in quantum gravity. Phys. Lett. B 225, 227-232.
    • 28. M. P. Da¸browski, C. Kiefer, and B. Sandh¨ofer (2006): Quantum phantom cosmology. Phys. Rev. D 74, 044022.
    • 29. H. D. Conradi (1998): Tunneling of macroscopic universes. Int. J. Mod. Phys. D 7, 189-200.
    • 30. C. Kiefer and T. P. Singh (1991): Quantum gravitational correction terms to the functional Schr¨odinger equation. Phys. Rev. D 44, 1067-1076; A. O. Barvinsky and C. Kiefer (1998): Wheeler-DeWitt equation and Feynman diagrams. Nucl. Phys. B 526, 509-539; C. Kiefer, T. Lu¨ck, and P. Moniz (2005): Semiclassical approximation to supersymmetric quantum gravity. Phys. Rev. D 72, 045006.
    • 31. C. Kiefer, J. Marto, and P. V. Moniz (2008): Canonical quantum gravity and black hole evaporation. In preparation.
    • 32. J. J. Halliwell and S. W. Hawking (1985): Origin of structure in the Universe. Phys. Rev. D 31, 1777-1791.
    • 33. A. Vilenkin (1989): Interpretation of the wave function of the Universe. Phys. Rev. D 39, 1116-1122.
    • 34. H. D. Zeh (2007): The physical basis of the direction of time, fifth edition (Springer, Berlin).
    • 35. C. Kiefer and H. D. Zeh (1995): Arrow of time in a recollapsing quantum universe. Phys. Rev. D 51, 4145-4153.
    • 36. C. Kiefer, D. Polarski, and A. A. Starobinsky (1998): Quantum-to-classical transition for fluctuations in the early universe. Int. J. Mod. Phys. D 7, 455- 462.
    • 37. B. Mashhoon (2001): Gravitation and non-locality. In: Proceedings of the 25th Johns Hopkins Workshop 2001: A Relativistic Spacetime Odyssey (World Scientific, Singapore), pp. 35-46.
    • 38. D. A. Konkowski, T. M. Helliwell, and V. Arndt (2004): Are classically singular spacetimes quantum mechanically singular as well? In: Proceedings of the Tenth Marcel Grossmann Meeting on General Relativity, Rio de Janeiro (World Scientific, Singapore), pp. 2169-2171.
    • 39. A. Y. Kamenshchik, C. Kiefer, and B. Sandh¨ofer (2007): Quantum cosmology with a big-brake singularity. Phys. Rev. D 76, 064032.
    • 40. S. W. Hawking and G. F. R. Ellis (1973): The large scale structure of spacetime. Cambridge University Press, Cambridge.
    • 41. M. Bojowald (2007): Singularities and quantum gravity; gr-qc/0702144.
    • 42. H. D. Conradi (1995): Quantum cosmology of Kantowski-Sachs like models. Class. Quantum Grav. 12, 2423-2439.
    • 43. C. Kiefer (1988): Wave packets in minisuperspace. Phys. Rev. D 38, 1761-1772.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from