LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Preprint
Subjects: Condensed Matter - Materials Science

Classified by OpenAIRE into

arxiv: Condensed Matter::Superconductivity
The classical problem of magnetic stripe domain behavior in films and plates with uniaxial magnetic anisotropy is treated. Exact analytical results are derived for the stripe domain widths as function of applied perpendicular field, $H$, in the regime where the domain period becomes large. The stripe period diverges as $(H_c-H)^{-1/2}$, where $H_c$ is the critical (infinite period) field, an exact result confirming a previous conjecture. The magnetization approaches saturation as $(H_c-H)^{1/2}$, a behavior which compares excellently with experimental data obtained for a $4 \mu$m thick ferrite garnet film. The exact analytical solution provides a new basis for precise characterization of uniaxial magnetic films and plates, illustrated by a simple way to measure the domain wall energy. The mathematical approach is applicable for similar analysis of a wide class of systems with competing interactions where a stripe domain phase is formed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. Seul and D. Adelman, Science 267, 476 (1995). C. Sagui, E. Asciutto and C. Roland, Nano Lett. 5, 389 (2005).
    • [2] C. Kooy and U. Enz, Philips Res. Repts. 15, 7 (1960).
    • [3] C. Flament, J.-C. Bacri, A. Cebers, F. Elias and R. Perzynski Europhys. Lett. 34, 225 (1996). M. F. Islam, K. H. Lin, D. Lacoste, T. C. Lubensky and A. G. Yodh Phys. Rev. E 67, 021402 (2003).
    • [4] R. P. Huebener Magnetic Flux Structures of Superconductors (Springer-Verlag, New York, 2001). R. Prozorov, Phys. Rev. Lett. 98, 257001 (2007).
    • [5] J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995).
    • [6] M. M. Fogler, A. A. Koulakov, and B. I. Shklovskii, Phys. Rev. B 54, 1853 (1996). A. A. Koulakov, M .M. Fogler, and B. I. Shklovskii, Phys. Rev. Lett. 76, 499 (1996).
    • [7] P. G. De Gennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982). W. M. Gelbart andA. Ben-Shaul, J. Phys. Chem. 100, 13169 (1996).
    • [8] A. H. Bobeck and E. Della Torre Magnetic Bubbles: (American Elsevier, New York, 1975).
    • [9] L. E. Helseth, T. M. Fischer and T. H. Johansen, Phys. Rev. Lett. 91, 208302 (2003). L. E. Helseth, L. E. Wen, R. W. Hansen, T. H. Johansen, P. Heinig and T. M. Fischer Langmuir 20, 7323 (2004). P. Tierno, T. H. Johansen and Th. M. Fischer, Phys. Rev. Lett. 99, 038303 (2007). P. Tierno, Th. M. Fischer, T. H. Johansen and F. Sagues, Phys. Rev. Lett. 100, 148304 (2008).
    • [10] P. E. Goa, H. Hauglin, A. A. F. Olsen, D. V. Shantsev, T. H. Johansen, Appl. Phys. Lett. 82, 79 (2003). L. E. Helseth, P. E. Goa, H. Hauglin, D. V. Shantsev, T. H. Johansen, Y. M. Galperin, Phys. Rev. B 65, 132514 (2002). J. I. Vestg˚arden, D. V. Shantsev, T. H. Johansen, Y. M. Galperin, P. E. Goa and V. V. Yurchenko, Phys. Rev. Lett. 98, 117002 (2007).
    • [11] V. H. Dao, S. Burdin, and A. Buzdin, Phys. Rev. B. 84, 134503 (2011). M. Iavarone, A. Scarfato, F. Bobba, M. Longobardi, G. Karapetrov, V. Novosad, V. Yefremenko, F. Giubileo, and A. M. Cucolo, Phys. Rev. B. 84, 024596 (2011). V. Vlasko-Vlasov, A. Buzdin, A. Melnikov, U. Welp, D. Rosenman, L. Uspenskaya, V. Fratello, and W. Kwok, Phys. Rev. B 85, 064505 (2012).
    • [12] J. A. Cape and G. W. Lehman, J. Appl. Phys. 42, 5732 (1971). K. L. Babcock and R. M. Westervelt, Phys. Rev. A 40, 2022 (1989).
    • [13] From the Eqs. (2) and (3) it is not evident that such a critical point should exist. Our choice of variables was made by postulating an hc where d diverges and a↓ remains finite (as suggested by numerics), and realizing that the leading terms in the analytical functions representing the Fourier sums depend only on x/y as x, y → 0.
    • [14] P. E. Goa, H. Hauglin, A. A. F. Olsen, M. Baziljevich and T. H. Johansen, Rev. Sci. Instrum. 74, 141 (2003).
    • [15] R. Goldstein, D. P. Jackson and A. T. Dorsey, Phys. Rev. Lett. 76, 3818 (1996). A. T. Dorsey and R. Goldstein, Phys. Rev. B 57, 3058 (1998).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • ARC | Magnetic walls as nano-mani...
  • ARC | Tailoring superconducting h...

Cite this article

Collected from