LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mueller, Wolf-Christian; Grappin, Roland (2005)
Languages: English
Types: Preprint
Subjects: Physics - Fluid Dynamics, Physics - Plasma Physics

Classified by OpenAIRE into

arxiv: Physics::Space Physics
Spectral direct numerical simulations of incompressible MHD turbulence at a resolution of up to $1024^3$ collocation points are presented for a statistically isotropic system as well as for a setup with an imposed strong mean magnetic field. The spectra of residual energy, $E_k^\mathrm{R}=|E_k^\mathrm{M}-E_k^\mathrm{K}|$, and total energy, $E_k=E^\mathrm{K}_k+E^\mathrm{M}_k$, are observed to scale self-similarly in the inertial range as $E_k^\mathrm{R}\sim k^{-7/3}$, $E_k\sim k^{-5/3}$ (isotropic case) and $E^\mathrm{R}_{k_\perp}\sim k_\perp^{-2}$, $E_{k_\perp}\sim k_\perp^{-3/2}$ (anisotropic case, perpendicular to the mean field direction). A model of dynamic equilibrium between kinetic and magnetic energy, based on the corresponding evolution equations of the eddy-damped quasi-normal Markovian (EDQNM) closure approximation, explains the findings. The assumed interplay of turbulent dynamo and Alfv\'en effect yields $E_k^\mathrm{R}\sim k E^2_k$ which is confirmed by the simulations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] S. Ortolani and D. D. Schnack, Magnetohydrodynamics of Plasma Relaxation (World Scientific, Singapore, 1993).
    • [2] Y. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloff, Magnetic Fields In Astrophysics (Gordon and Breach Science Publishers, New York, 1983).
    • [3] D. Biskamp, Magnetohydrodynamic Turbulence (Cambridge University Press, Cambridge, 2003).
    • [4] A. N. Kolmogorov, Proceedings of the Royal Society A 434, 9 (1991), [Dokl. Akad. Nauk SSSR, 30(4), 1941].
    • [5] P. S. Iroshnikov, Soviet Astronomy 7, 566 (1964), [Astron. Zh., 40:742, 1963].
    • [6] R. H. Kraichnan, Physics of Fluids 8, 1385 (1965).
    • [7] P. Goldreich and S. Sridhar, Astrophysical Journal 485, 680 (1997).
    • [8] S. Sridhar and P. Goldreich, Astrophysical Journal 432, 612 (1994).
    • [9] W.-C. Mu¨ller and D. Biskamp, in Turbulence and Magnetic Fields in Astrophysics, edited by E. Falgarone and T. Passot (Springer Berlin, 2002), vol. 614 of Lecture Notes in Physics, pp. 3-27.
    • [10] R. Grappin, A. Pouquet, and J. L´eorat, Astronomy and Astrophysics 126, 51 (1983).
    • [11] A. Vincent and M. Meneguzzi, Journal of Fluid Mechanics 225, 1 (1991).
    • [12] D. Biskamp and W.-C. Mu¨ller, Physical Review Letters 83, 2195 (1999).
    • [13] W.-C. Mu¨ller and D. Biskamp, Physical Review Letters 84, 475 (2000).
    • [14] N. E. L. Haugen, A. Brandenburg, and W. Dobler, Physical Review E 70, 016308 (2004).
    • [15] R. J. Leamon, C. W. Smith, N. F. Ness, W. H. Matthaeus, and H. K. Wong, Journal of Geophysical Research 103, 4775 (1998).
    • [16] M. L. Goldstein and D. A. Roberts, Physics of Plasmas 6, 4154 (1999).
    • [17] Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, and A. Uno, Physics of Fluids 15, L21 (2003).
    • [18] W.-C. Mu¨ller, D. Biskamp, and R. Grappin, Physical Review E 67, 066302 (2003).
    • [19] R. Grappin, Physics of Fluids 29, 2433 (1986).
    • [20] J. V. Shebalin, W. H. Matthaeus, and D. Montgomery, Journal of Plasma Physics 29, 525 (1983).
    • [21] R. M. Kinney and J. C. McWilliams, Physical Review E 57, 7111 (1998).
    • [22] S. Oughton, W. H. Matthaeus, and S. Ghosh, Physics of Plasmas 5, 4235 (1998).
    • [23] J. Cho, A. Lazarian, and E. T. Vishniac, Astrophysical Journal 564, 291 (2002).
    • [24] J. Cho and E. T. Vishniac, Astrophysical Journal 539, 273 (2000).
    • [25] J. Maron and P. Goldreich, Astrophysical Journal 554, 1175 (2001).
    • [26] S. A. Orszag, Journal of Fluid Mechanics 41, 363 (1970).
    • [27] A. Pouquet, U. Frisch, and J. L´eorat, Journal of Fluid Mechanics 77, 321 (1976).
    • [28] R. Grappin, U. Frisch, J. L´eorat und A. Pouquet, Astronomy and Astrophysics 105, 6 (1982).
    • [29] M. Lesieur, Turbulence in Fluids (Kluwer Academic Publishers, Dordrecht, 1997).
    • [30] J. Heyvaerts and E. R. Priest, Astronomy & Astrophysics 117, 220 (1983).
    • [31] D. Biskamp, Chaos, Solitons & Fractals 5, 1779 (1995).
    • [32] The other definition of EkR involving the modulus op-
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok