LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cipriani, Mattia; Nitta, Muneto (2013)
Languages: English
Types: Preprint
Subjects: High Energy Physics - Phenomenology, High Energy Physics - Theory, Condensed Matter - Quantum Gases

Classified by OpenAIRE into

arxiv: Condensed Matter::Quantum Gases, Condensed Matter::Superconductivity, Condensed Matter::Other
We study effects of the internal coherent (Rabi) coupling in vortex lattices in two-component BECs under rotation. We find how the vortex lattices without the Rabi coupling known before are connected to the Abrikosov lattice of integer vortices with increasing the Rabi coupling. We find that 1) for small Rabi couplings, fractional vortices in triangular or square lattice for small or large inter-component coupling constitute hexamers or tetramers, namely multi-dimer bound states made of six or four vortices, respectively, 2) these bound states are broken into a set of dimers at intermediate Rabi couplings, and 3) vortices change their partners in various ways depending on the inter-component coupling to organize themselves for constituting the Abrikosov lattice of integer vortices at strong Rabi couplings.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. M. Salomaa and G. E. Volovik, Phys. Rev. Lett. 55, 1184-1187 (1985); M. M. Salomaa and G. E. Volovik, Rev. Mod. Phys. 59, 533-613 (1987).
    • [2] G. E. Volovik, The Universe in a Helium Droplet, Clarendon Press, Oxford (2003).
    • [3] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
    • [4] S. B. Chung, H. Bluhm, and E.-A. Kim, Phys. Rev. Lett. 99, 197002 (2007); S. B. Chung and S. A. Kivelson, Phys. Rev. B 82, 214512 (2010).
    • [5] J. Jang, D. G. Ferguson, V. Vakaryuk, R. Budakian, S. B. Chung, P. M. Goldbart and Y. Maeno, Science 14, 186-188 (2011).
    • [6] Y. Tanaka, J. Phys. Soc. Jp. 70 (2001) 2844; Phys. Rev. Lett. 88 (2001) 017002.
    • [7] E. Babaev, Phys. Rev. Lett. 89 (2002) 067001; E. Babaev, A. Sudbo and N. W. Ashcroft, Nature 431, 666 (2004); J. Smiseth, E. Smorgrav, E. Babaev and A. Sudbo, Phys. Rev. B 71, 214509 (2005); E. Babaev and N. W. Ashcroft, Nature Phys. 3, 530 (2007).
    • [8] A. Gurevich and V. M. Vinokur, Phys. Rev. Lett. 90, 047004 (2003).
    • [9] J. Goryo, S. Soma and H. Matsukawa, Euro Phys. Lett. 80, 17002 (2007).
    • [10] T.-L. Ho, Phys. Rev. Lett. 81, 742-745 (1998); T. Ohmi and K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998).
    • [11] G. W. Semenoff and F. Zhou, Phys. Rev. Lett. 98 (2007) 100401; M. Kobayashi, Y. Kawaguchi, M. Nitta and M. Ueda, Phys. Rev. Lett. 103 (2009) 115301.
    • [12] D. T. Son and M. A. Stephanov, Phys. Rev. A 65, 063621 (2002).
    • [13] E. J. Mueller and T.-L. Ho, Phys. Rev. Lett. 88, 180403 (2002).
    • [14] K. Kasamatsu, M. Tsubota and M. Ueda, Phys. Rev. Lett. 91, 150406 (2003).
    • [15] K. Kasamatsu, M. Tsubota and M. Ueda, Int. J. Mod. Phys. B 19, 1835 (2005).
    • [16] A. Aftalion, P. Mason and W. Juncheng, Phys. Rev. A 85, 033614 (2012).
    • [17] P. Kuopanportti, J. A. M. Huhtamäki, M. Möttönen, Phys. Rev. A 85, 043613 (2012).
    • [18] K. Kasamatsu, M. Tsubota and M. Ueda, Phys. Rev. Lett 93, 250406 (2004).
    • [19] K. Kasamatsu, and M. Tsubota, Phys. Rev. A 79, 023606 (2009).
    • [20] M. Eto, K. Kasamatsu, M. Nitta, H. Takeuchi and M. Tsubota, Phys. Rev. A 83, 063603 (2011).
    • [21] M. Eto and M. Nitta, Phys. Rev. A 85, 053645 (2012).
    • [22] Y. G. Rubo, Phys. Rev. Lett. 99, 106401 (2007); K. G. Lagoudakis, T. Ostatnicky, A. V. Kavokin, Y. G. Rubo, R. Andre, and B. Deveaud-Pledran, Science 326, 974 - 976 (2009); Y. G. Rubo, arXiv:1209.6538 [cond-mat.mes-hall] G. Roumpos, M. D. Fraser, A. Löffler, S. Höfling, A. Forchel and Y. Yamamoto Nature Phys. 7, 129-133 (2011).
    • [23] J. Keeling and N. G. Berloff, Phys. Rev. Lett. 100, 250401 (2008); M. O. Borgh, G. Franchetti, J. Keeling and N. G. Berloff, Phys. Rev. B 86, 035307 (2012).
    • [24] L. M. Pismen, Phys. Rev. Lett. 72, 2557-2560 (1994); L. M. Pismen, Physica D 73, 244-258 (1994); I. S. Aranson and L. M. Pismen, Phys. Rev. Lett. 84, 634-637 (2000); L. M. Pismen, Vortices in Nonlinear Fields: From Liquid Crystals to Superfluids, from Non-Equilibrium Patterns to Cosmic Strings, Oxford Univ Pr on Demand (1999).
    • [25] A. P. Balachandran, S. Digal and T. Matsuura, Phys. Rev. D 73 (2006) 074009; E. Nakano, M. Nitta and T. Matsuura, Phys. Rev. D 78 (2008) 045002; M. Eto and M. Nitta, Phys. Rev. D 80 (2009) 125007; M. Eto, E. Nakano and M. Nitta, Phys. Rev. D 80, 125011 (2009); M. Eto, M. Nitta and N. Yamamoto, Phys. Rev. Lett. 104, 161601 (2010).
    • [26] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd ed. (Cambridge University Press, Cambridge 2008)
    • [27] C. Chin, R. Grimm, P. Julienne and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
    • [28] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 78, 586 (1997); D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 81, 1539 (1998); M. Mertes, J. W. Merrill, R. Carretero-González, D. J. Frantzeskakis, P. G. Kevrekidis, and D. S. Hall, Phys. Rev. Lett. 99, 190402 (2007); S. Tojo, Y. Taguchi, Y. Masuyama, T. Hayashi, H. Saito, and T. Hirano, Phys. Rev. A 82, 033609 (2010).
    • [29] G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002); G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, and M. Inguscio, Phys. Rev. Lett. 100, 210402 (2008).
    • [30] S. B. Papp, J. M. Pino, and C. E. Wieman, Phys. Rev. Lett. 101, 040402 (2008).
    • [31] D. J. McCarron, H. W. Cho, D. L. Jenkin, M. P. Köppinger, and S. L. Cornish, Phys. Rev. A 84, 011603(R) (2011).
    • [32] A. Crisan et.al, T. Watanabe, Jpn. J. Appl. Phys. 46, L451-L453 (2007); Y. Tanaka et.al, Jpn. J. Appl. Phys. 46, 134-145 (2007); A. Crisan et.al, K. Tokiwa, T. Watanabe, T. W. Button, and J. S. Abell, Phys. Rev. B 77, 144518 (2008); J. W. Guikema et.al, Phys. Rev. B 77, 104515 (2008); L. Luan et.al, Phys. Rev. B 79, 214530 (2009).
    • [33] S. J. Woo, Q-Han Park, and N. P. Bigelow, Phys. Rev. Lett. 100, 120403 (2008).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from