Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chelba, Ciprian; Pereira, Fernando (2015)
Languages: English
Types: Preprint
Subjects: Computer Science - Computation and Language
We describe Sparse Non-negative Matrix (SNM) language model estimation using multinomial loss on held-out data. Being able to train on held-out data is important in practical situations where the training data is usually mismatched from the held-out/test data. It is also less constrained than the previous training algorithm using leave-one-out on training data: it allows the use of richer meta-features in the adjustment model, e.g. the diversity counts used by Kneser-Ney smoothing which would be difficult to deal with correctly in leave-one-out training. In experiments on the one billion words language modeling benchmark, we are able to slightly improve on our previous results which use a different loss function, and employ leave-one-out training on a subset of the main training set. Surprisingly, an adjustment model with meta-features that discard all lexical information can perform as well as lexicalized meta-features. We find that fairly small amounts of held-out data (on the order of 30-70 thousand words) are sufficient for training the adjustment model. In a real-life scenario where the training data is a mix of data sources that are imbalanced in size, and of different degrees of relevance to the held-out and test data, taking into account the data source for a given skip-/n-gram feature and combining them for best performance on held-out/test data improves over skip-/n-gram SNM models trained on pooled data by about 8% in the SMT setup, or as much as 15% in the ASR/IME setup. The ability to mix various data sources based on how relevant they are to a mismatched held-out set is probably the most attractive feature of the new estimation method for SNM LM.

Share - Bookmark

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok