Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ebeling, H.; White, D. A.; Rangarajan, F. V. N. (2006)
Languages: English
Types: Preprint
Subjects: Astrophysics
An efficient algorithm for adaptive kernel smoothing (AKS) of two-dimensional imaging data has been developed and implemented using the Interactive Data Language (IDL). The functional form of the kernel can be varied (top-hat, Gaussian etc.) to allow different weighting of the event counts registered within the smoothing region. For each individual pixel the algorithm increases the smoothing scale until the signal-to-noise ratio (s.n.r.) within the kernel reaches a preset value. Thus, noise is suppressed very efficiently, while at the same time real structure, i.e. signal that is locally significant at the selected s.n.r. level, is preserved on all scales. In particular, extended features in noise-dominated regions are visually enhanced. The ASMOOTH algorithm differs from other AKS routines in that it allows a quantitative assessment of the goodness of the local signal estimation by producing adaptively smoothed images in which all pixel values share the same signal-to-noise ratio above the background. We apply ASMOOTH to both real observational data (an X-ray image of clusters of galaxies obtained with the Chandra X-ray Observatory) and to a simulated data set. We find the ASMOOTHed images to be fair representations of the input data in the sense that the residuals are consistent with pure noise, i.e. they possess Poissonian variance and a near-Gaussian distribution around a mean of zero, and are spatially uncorrelated.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bauer F.E. et al. 2002, AJ, 123, 1163
    • Brandt W.N., Halpern J.P. & Iwasawa K. 1996, MNRAS, 281, 687
    • Ebeling H., Mendes de Oliveira C. & White D.A. 1995, MNRAS, 277, 1006
    • Cappellari M. & Copin Y. 2003, MNRAS, 342, 345
    • Clarke T.E., Blanton E.L. & Sarazin C.L. 2004, 616, 178
    • Diehl S. & Statler T.S. 2005, MNRAS, submitted
    • Ebeling H. et al. 2000, ApJ, 534, 133
    • Ebeling H. 2003, MNRAS, 340, 1269
    • Ebeling H., Barrett E. & Donovan, D. 2004, ApJ, 609, L49
    • Fabbiano G., Zezas A. & Murray S.S. 2001, ApJ, 554, 1035
    • Gil-Merino R. & Schindler S. 2003, A&A, 408, 51
    • Hamana T., Hattori M., Ebeling H., Henry J.P., Futamase T., Shioya Y. 1997, ApJ, 484, 574
    • Heike K., Awaki H., Misao Y., Hayashida K., Weaver K.A. 2003 ApJ, 591, 99L
    • Huang Z. & Sarazin C. 1996, ApJ, 461, 622
    • Jeltema T.E., Canizares C.R., Bautz M.W., Malm M.R., Donahue M., Garmire G.P. 2001, ApJ, 562, 124
    • Karovska M., Fabbiano G., Nicastro F., Elvis M., Kraft R.P., Murray S.S. 2002, ApJ, 2002, 577, 114
    • Krishnamurthi A., Reynolds C.S., Linsky J.L., Martin E., Gagne´ M. 2001, AJ, 121, 337
    • Lorenz H., Richter G.M., Capaccioli M., Longo G. 1993, A&A, 277, 321
    • Merritt D. & Tremblay B. 1994, AJ, 108, 514
    • Peebles P.J.E. 1980, The Large-Scale Structure of the Universe, Princeton, Princeton University Press
    • Pin˜a R.K. & Puetter R.C. 1992, PASP, 104, 1096
    • Pisani A. 1993, MNRAS, 265, 706
    • Pisani A. 1996, MNRAS, 278, 697
    • Pratt G.W. & Arnaud M. 2005, A&A, 429, 791
    • Rasmussen J., Stevens I.R. & Ponman T.J. 2004, MNRAS, 354, 259
    • Richter G.M., Bohm P., Lorenz H., Priebe A. 1991, Astron. Nachr., 312, 346
    • Sanders J.S. & Fabian A.C. 2001, MNRAS, 325, 178
    • Silverman B.W. 1986, Density Estimation for Statistics and Data Analysis, Chapman & Hall, London
    • Starck J.-L. & Pierre M. 1998, A&AS, 128, 397
    • Thompson A.M. 1990, A&A, 240, 209
    • Vio R., Fasano, G., Lazzarin M., Lessi, O. 1994, A&A, 289, 640
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from