LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zaliznyak, Igor A.; Tranquada, John M. (2013)
Languages: English
Types: Preprint
Subjects: Condensed Matter - Strongly Correlated Electrons

Classified by OpenAIRE into

arxiv: Condensed Matter::Strongly Correlated Electrons
Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect common phenomena such as magnetic order, and can be used to determine the coupling between magnetic moments through measurements of the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter, we provide an introduction to neutrons and neutron sources. The neutron scattering cross section is described and formulas are given for nuclear diffraction, phonon scattering, magnetic diffraction, and magnon scattering. As an experimental example, we describe measurements of antiferromagnetic order, spin dynamics, and their evolution in the La(2-x)Ba(x)CuO(4) family of high-temperature superconductors.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Bednorz, J. G. & Mu¨ller, K. A. Possible high Tc superconductivity in the Ba-La64, 189-193 (1986).
    • 2. Anderson, P. W. New approach to the theory of superexchange interactions. (1959).
    • 3. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature sup 288, 468-474 (2000).
    • 4. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperatur Mod. Phys. 75, 1201-1241 (2003).
    • 5. Carlson, E. W., Emery, V. J., Kivelson, S. A. & Orgad, D. Concepts in high t superconductivity. In The Physics of Superconductors Vol. II: Superconductivi High-Tc and Novel Superconductors, Organic Superconductors (eds Bennema J. B.) (Springer, Berlin, in the press); preprint at khttp://xxx.arxiv.org/pdf/con
    • 6. Bourges, P. et al. The spin excitation spectrum in superconducting YBa2Cu3 1234-1237 (2000).
    • 7. Kaneshita, E., Ichioka, M. & Machida, K. Spin and charge excitations in inco waves. J. Phys. Soc. Jpn 70, 866-876 (2001).
    • Fig. 1.8. (a)FigQur-ein4tEexgperraimteendtalsrpeseucltstrfoarlinwtegeriagtehdtmagnetic(bsc)ateterinegcatnivdedismpearsgionneotfithce disp8.erBastiisotan,C.iDn., Ortiz, G. & Balatsky, A. V. Unified description of the resonan and
    • the stripe-ordexecriteatdions. a, S(q), as defined in the text. Circles denote the 1E =i¼8,8f0rmoemV data set;The solinidcomlminenesusration in high-Tc superconductors. Phys. Rev. B 64, 172508 (20 phase of La2 xBaxCuO4 with x = [60].
    • through the smdqaaugatnraeestipcdseocniaontttetersEiniga¼rfreo2m4d0oetmhseecrVrs;iidgbinaeamldso,ncidansredtwehnaoestetatkEeeixn¼tto.5a0Ivn0oimd(seatVr).on,Ingtdchiosnetitnrgipbuueistaihoiknnsgfarthotme 49.0 eHmxacyitdeaetVnio,nSs.iMisn.a,Mhiogohk-,trHan.sAit.,ioDna-it,ePm.,pPeerrartiunrge, sTu.pGe.r&coDndoug˘catno,rF..NTahteursetr4u2c9tu,r5e now know topbhoenon branches at 20 and 47 meV. To obtain only the spin-dependendtibsephaevriosuiro,wneis p1l0o. tRtezenidk, Dfo.ertal. Dispersion of magnetic excitations in superconducting opti due to a phonon mode. In (b), the e ective
    • q along a linehavtehcroorruecgtehd ftohrethei nancisoomtrompicemnasgunertaictfeormmfaacgtonr3e0t.iFcurtshuerpinevrelsatigtattiiocneispeaks. 11. YABrrai2gCoun3i,OE6..,95F.rPadrekpinri,nEt.a&tkKhtitvpe:l/s/oxnx,xS.a.rAxi.vM.oergch/padnfi/scmonodf-hmigaht/0te3m07p5e9r1altu(r2e0s required to determine whether or not the sharp feature at 42 meV is actually magnetic. striped Hubbard model. Preprint at khttp://xxx.arxiv.org/pdf/cond-mat/030 b, Dispersion measured along Q 0 ¼ (1 þ q, q), with the assumption of symmetry 12. Moodenbaugh, A. R., Xu, Y., Suenaga, M., Folkerts, T. J. & Shelton, R. N. Sup for T < Tc.abTouhtqe¼c0o. mRemdlinoensianlaitaynd boafretchaleculdateisd pfroemr sthieotnwos-leogvsepirn laaddebrrmooadedl weithnergyof Lraa22nxBgaxeCuO4. Phys. Rev. B 38, 4596-4600 (1988). 13. Fujita, M., Goka, H., Yamada, K., Tranquada, J. M. & Regnault, L. P. Stripe
    • suggests thathtetshameecpharaamregteersaansdin Fsigp. i3n.Tcheobrlracekladatsihoednlsinei nin as uispa elorrecnotzniadnutocdtesicnrigbeand sflutcrtuiaptioendsin La1.875Ba0.125CuO4 and La1.875Ba0.075Sr0.050CuO4. Preprint at cuprates arethesilomw ielnaerrg.y signal, and the red dot-dashed line is the sum of the other two curves. pdf/cond-mat/0403396l (2004) iVnetertgicraalte'edr,rworh'ilbeahrsorinizoantaanldbabrsinidnicbatiendthiceateentehregyharalfn-gweidothvserinwqhicohf tdhaetafitwteedregaussian 1145.. S2WaDchhitt-deJe,mvS,.oSRd..e&&l. RPScehaayldsa.,pRNine.voL.,aLDreg.tetJ..ND80ee,nx1sp2iat7yn2sm-io1an2tr7fi5oxr(r1efrn9u9os8rtm)r.aatelidzaatniodndgorpoeudpqstuuadnytuof peaks. J. Mod. Phys. B 5, 219-249 (1991).
    • References NATURE | VOL 429 | 3 JUNE 2004 | www.nature.com/nature
    • 1. C.G. Shull, J.S. Smart, Phys. Rev. 76, 1256 (1949).
    • 2. G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering, 3rd edn. (Cambridge University Press, Cambridge, 2012)
    • 3. S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter (Oxford University Press, 1984)
    • 4. G. Shirane, S.M. Shapiro, J.M. Tranquada, Neutron Scattering with a TripleAxis Spectrometer: Basic Techniques (Cambridge University Press, Cambridge, 2002)
    • 5. I.A. Zaliznyak, S.H. Lee, in Modern Techniques for Characterizing Magnetic Materials, ed. by Y. Zhu (Springer, Heidelberg, 2005)
    • 6. I.A. Zaliznyak, in Handbook for Magnetism and Advanced Magnetic Materials, ed. by H. Kronmuller, S. Parkin (John Wiley & Sons, UK, 2007)
    • 7. R.J. Birgeneau, C. Stock, J.M. Tranquada, K. Yamada, J. Phys. Soc. Jpn. 75, 111003 (2006)
    • 8. J.M. Tranquada, in Handbook of High-Temperature Superconductivity, ed. by J.R. Schrie er, J.S. Brooks (Springer, New York, 2007), pp. 257{298
    • 9. M. Fujita, H. Hiraka, M. Matsuda, M. Matsuura, J.M. Tranquada, S. Wakimoto, G. Xu, K. Yamada, J. Phys. Soc. Jpn. 81, 011007 (2012).
    • 10. P. Bourges, Y. Sidis, C. R. Phys. 12, 461 (2011).
    • 11. P.J. Mohr, B.N. Taylor, D.B. Newell. CODATA Recommended Values of the Fundamental Physical Constants: 2010. arXiv:1203.5425
    • 12. F.E. Wietfeldt, G.L. Greene, Rev. Mod. Phys. 83, 1173 (2011).
    • 13. V.F. Sears, Neutron Optics (Oxford University Press, Oxford, 1989)
    • 14. Y.A. Izyumov, R.P. Ozerov, Magnetic Neutron Di raction (Plenum Press, New York, 1970)
    • 15. J. Jensen, A.R. Mackintosh, Rare Earth Magnetism (Clarendon Press, Oxford, 1991)
    • 16. E. Fermi, L. Marshall, Phys. Rev. 71, 666 (1947).
    • 17. E. Fermi, L. Marshall, Phys. Rev. 72, 408 (1947).
    • 18. A.J.C. Wilson (ed.), International Tables for Crystallography, vol. C (Kluwer Academic Publishers, Dordrecht, 1995)
    • 19. V.F. Sears, Neutron News 3(3), 26 (1992). Data available at: www.ncnr.nist.gov/resources/n-lengths/
    • 20. S.F. Mughabghab, Atlas of Neutron Resonances, 5th edn. (Elsevier Science, 2006)
    • 21. E. Fermi, Ric. Sci. 7, 13 (1936)
    • 22. B.A. Lippmann, J. Schwinger, Phys. Rev. 79, 469 (1950).
    • 23. L. Van Hove, Phys. Rev. 95, 1374 (1954).
    • 24. M. Blume, Phys. Rev. 124, 96 (1961).
    • 25. R.J. Donnelly, J.A. Donnelly, R.N. Hills, J. Low Temp. Phys. 44, 471 (1981)
    • 26. J. Villain, J. Phys. Chem. Solids 11, 303 (1959).
    • 27. A. Yoshimori, J. Phys. Soc. Jpn. 14, 807 (1959).
    • 28. J.W. Lynn, G. Shirane, M. Blume, Phys. Rev. Lett. 37, 154 (1976).
    • 29. S. Shamoto, M. Sato, J.M. Tranquada, B.J. Sternlieb, G. Shirane, Phys. Rev. B 48, 13817 (1993)
    • 30. R. Coldea, S.M. Hayden, G. Aeppli, T.G. Perring, C.D. Frost, T.E. Mason, S.W. Cheong, Z. Fisk, Phys. Rev. Lett. 86, 5377 (2001)
    • 31. N.S. Headings, S.M. Hayden, R. Coldea, T.G. Perring, Phys. Rev. Lett. 105, 247001 (2010)
    • 32. I.A. Zaliznyak, H. Woo, T.G. Perring, C.L. Broholm, C.D. Frost, H. Takagi, Phys. Rev. Lett. 93, 087202 (2004)
    • 33. A.C. Walters, T.G. Perring, J.S. Caux, A.T. Savici, G.D. Gu, C.C. Lee, W. Ku, I.A. Zaliznyak, Nat. Phys. 5, 867 (2009)
    • 34. R.E. Walstedt, S.W. Cheong, Phys. Rev. B 64, 014404 (2001).
    • 35. J.G. Bednorz, K.A. Muller, Z. Phys. B 64, 189 (1986)
    • 36. P.W. Anderson, Science 235, 1196 (1987)
    • 37. D. Vaknin, S.K. Sinha, D.E. Moncton, D.C. Johnston, J.M. Newsam, C.R. Sa nya, J. H. E. King, Phys. Rev. Lett. 58, 2802 (1987)
    • 38. J.D. Axe, M.K. Crawford, J. Low Temp. Phys. 95, 271 (1994)
    • 39. K. Yamada, E. Kudo, Y. Endoh, Y. Hidaka, M. Oda, M. Suzuki, T. Murakami, Solid State Commun. 64, 753 (1987)
    • 40. B.O. Wells, Y.S. Lee, M.A. Kastner, R.J. Christianson, R.J. Birgeneau, K. Yamada, Y. Endoh, G. Shirane, Science 277, 1067 (1997)
    • 41. B. Keimer, A. Aharony, A. Auerbach, R.J. Birgeneau, A. Cassanho, Y. Endoh, R.W. Erwin, M.A. Kastner, G. Shirane, Phys. Rev. B 45, 7430 (1992)
    • 42. Y.S. Lee, R.J. Birgeneau, M.A. Kastner, Y. Endoh, S. Wakimoto, K. Yamada, R.W. Erwin, S.H. Lee, G. Shirane, Phys. Rev. B 60, 3643 (1999)
    • 43. M.A. Kastner, R.J. Birgeneau, G. Shirane, Y. Endoh, Rev. Mod. Phys. 70, 897 (1998)
    • 44. G. Shirane, Y. Endoh, R.J. Birgeneau, M.A. Kastner, Y. Hidaka, M. Oda, M. Suzuki, T. Murakami, Phys. Rev. Lett. 59, 1613 (1987)
    • 45. S. Chakravarty, B.I. Halperin, D.R. Nelson, Phys. Rev. Lett. 60, 1057 (1988)
    • 46. E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).
    • 47. S.M. Hayden, G. Aeppli, R. Osborn, A.D. Taylor, T.G. Perring, S.W. Cheong, Z. Fisk, Phys. Rev. Lett. 67, 3622 (1991)
    • 48. J. Lorenzana, G. Seibold, R. Coldea, Phys. Rev. B 72, 224511 (2005)
    • 49. B. Dalla Piazza, M. Mourigal, M. Guarise, H. Berger, T. Schmitt, K.J. Zhou, M. Grioni, H.M. R nnow, Phys. Rev. B 85, 100508 (2012)
    • 50. C. Stock, R.A. Cowley, W.J.L. Buyers, C.D. Frost, J.W. Taylor, D. Peets, R. Liang, D. Bonn, W.N. Hardy, Phys. Rev. B 82, 174505 (2010)
    • 51. K. Yamada, C.H. Lee, K. Kurahashi, J. Wada, S. Wakimoto, S. Ueki, Y. Kimura, Y. Endoh, S. Hosoya, G. Shirane, R.J. Birgeneau, M. Greven, M.A. Kastner, Y.J. Kim, Phys. Rev. B 57, 6165 (1998)
    • 52. J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Nature 375, 561 (1995)
    • 53. M. Fujita, H. Goka, K. Yamada, J.M. Tranquada, L.P. Regnault, Phys. Rev. B 70, 104517 (2004)
    • 54. M. Hucker, M. v. Zimmermann, G.D. Gu, Z.J. Xu, J.S. Wen, G. Xu, H.J. Kang, A. Zheludev, J.M. Tranquada, Phys. Rev. B 83, 104506 (2011)
    • 55. S.A. Kivelson, I.P. Bindloss, E. Fradkin, V. Oganesyan, J.M. Tranquada, A. Kapitulnik, C. Howald, Rev. Mod. Phys. 75, 1201 (2003)
    • 56. J. Zaanen, O.Y. Osman, H.V. Kruis, Z. Nussinov, J. Tworzydlo, Phil. Mag. B 81, 1485 (2001)
    • 57. N. Ichikawa, S. Uchida, J.M. Tranquada, T. Niemoller, P.M. Gehring, S.H. Lee, J.R. Schneider, Phys. Rev. Lett. 85, 1738 (2000)
    • 58. Q. Jie, S.J. Han, I. Dimitrov, J. Tranquada, Q. Li, Physica C 481, 46 (2012).
    • 59. E. Berg, E. Fradkin, S.A. Kivelson, J.M. Tranquada, New J. Phys. 11, 115004 (2009)
    • 60. J.M. Tranquada, H. Woo, T.G. Perring, H. Goka, G.D. Gu, G. Xu, M. Fujita, K. Yamada, Nature 429, 534 (2004)
    • 61. G.Y. Xu, J.M. Tranquada, T.G. Perring, G.D. Gu, M. Fujita, K. Yamada, Phys. Rev. B 76, 014508 (2007)
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from