LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Buchbinder, I. L.; Dempster, P.; Tsulaia, M. (2013)
Languages: English
Types: Preprint
Subjects: High Energy Physics - Theory
We consider in detail the most general cubic Lagrangian which describes an interaction between two identical higher spin fieldsin a triplet formulation with a scalar field, all fields having the same values of the mass. After performing the gauge fixing procedure we find that for the case of massive fields the gauge invariance does not guarantee the preservation of the correct number of propagating physical degrees of freedom. In order to get the correct number of degrees of freedom for the massive higher spin field one should impose some additional conditions on parameters of the vertex. Further independent constraints are provided by the causality analysis, indicating that the requirement of causality should be imposed in addition to the requirement of gauge invariance in order to have a consistent propagation of massive higher spin fields.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. A. Vasiliev, Phys. Lett. B 567, 139 (2003) [hep-th/0304049]. M. A. Vasiliev, Phys. Lett. B 285, 225 (1992). M. A. Vasiliev, Phys. Lett. B 243, 378 (1990). E. S. Fradkin and M. A. Vasiliev, Nucl. Phys. B 291, 141 (1987).
    • [2] A. K. H. Bengtsson, I. Bengtsson and L. Brink, Nucl. Phys. B 227, 31 (1983). F. A. Berends, G. J. H. Burgers and H. van Dam, Nucl. Phys. B 260, 295 (1985).
    • [3] I. G. Koh and S. Ouvry, Phys. Lett. B 179, 115 (1986) [Erratum-ibid. 183B, 434 (1987)]. A. K. H. Bengtsson, Class. Quant. Grav. 5, 437 (1988).
    • [4] R. R. Metsaev, Nucl. Phys. B 759, 147 (2006) [hep-th/0512342]. R. R. Metsaev, Nucl. Phys. B 859, 13 (2012) [arXiv:0712.3526 [hep-th]].
    • [5] R. Manvelyan, K. Mkrtchyan and W. Ruhl, Nucl. Phys. B 836, 204 (2010) [arXiv:1003.2877 [hep-th]].
    • [6] A. Sagnotti and M. Taronna, Nucl. Phys. B 842, 299 (2011) [arXiv:1006.5242 [hep-th]].
    • [7] A. Fotopoulos and M. Tsulaia, JHEP 1011, 086 (2010) [arXiv:1009.0727 [hepth]].
    • [8] R. Manvelyan, K. Mkrtchyan and W. Ruehl, Phys. Lett. B 696, 410 (2011) [arXiv:1009.1054 [hep-th]].
    • [9] R. R. Metsaev, Phys. Lett. B 720, 237 (2013) [arXiv:1205.3131 [hep-th]].
    • [10] M. Henneaux, G. Lucena Gomez and R. Rahman, JHEP 1208, 093 (2012) [arXiv:1206.1048 [hep-th]].
    • [11] I. L. Buchbinder, A. Fotopoulos, A. C. Petkou and M. Tsulaia, Phys. Rev. D 74, 105018 (2006) [hep-th/0609082]. A. Fotopoulos, N. Irges, A. C. Petkou and M. Tsulaia, JHEP 0710, 021 (2007) [arXiv:0708.1399 [hep-th]].
    • [12] R. Manvelyan and K. Mkrtchyan, Mod. Phys. Lett. A 25, 1333 (2010) [arXiv:0903.0058 [hep-th]].
    • [13] E. Joung and M. Taronna, Nucl. Phys. B 861, 145 (2012) [arXiv:1110.5918 [hep-th]]. E. Joung, M. Taronna and A. Waldron, arXiv:1305.5809 [hep-th].
    • [14] M. A. Vasiliev, Nucl. Phys. B 862, 341 (2012) [arXiv:1108.5921 [hep-th]].
    • [15] K. B. Alkalaev and M. A. Vasiliev, Nucl. Phys. B 655, 57 (2003) [hep-th/0206068].
    • [16] N. Boulanger, D. Ponomarev, E. D. Skvortsov and M. Taronna, arXiv:1305.5180 [hep-th]. N. Boulanger, D. Ponomarev and E. D. Skvortsov, JHEP 1305, 008 (2013) [arXiv:1211.6979 [hep-th]].
    • [17] M. Taronna, JHEP 1204, 029 (2012) [arXiv:1107.5843 [hep-th]].
    • [18] P. Dempster and M. Tsulaia, Nucl. Phys. B 865, 353 (2012) [arXiv:1203.5597 [hep-th]].
    • [19] D. Polyakov, Phys. Rev. D 83, 046005 (2011) [arXiv:1011.0353 [hep-th]].
    • [20] A. Jevicki, K. Jin and Q. Ye, J. Phys. A 46, 214005 (2013) [arXiv:1212.5215 [hep-th]].
    • [21] G. Velo and D. Zwanziger, Phys. Rev. 186, 1337 (1969). G. Velo and D. Zwanziger, Phys. Rev. 188, 2218 (1969).
    • [22] G. Velo, Nucl. Phys. B 43, 389 (1972).
    • [23] I. L. Buchbinder, D. M. Gitman, V. A. Krykhtin and V. D. Pershin, Nucl. Phys. B 584, 615 (2000) [hep-th/9910188]. I. L. Buchbinder, D. M. Gitman and V. D. Pershin, Phys. Lett. B 492, 161 (2000) [hep-th/0006144].
    • [24] S. Deser and A. Waldron, Nucl. Phys. B 631, 369 (2002) [hep-th/0112182].
    • [25] M. Porrati and R. Rahman, Nucl. Phys. B 814, 370 (2009) [arXiv:0812.4254 [hep-th]].
    • [26] M. Porrati and R. Rahman, Phys. Rev. D 80, 025009 (2009) [arXiv:0906.1432 [hep-th]].
    • [27] I. L. Buchbinder, V. A. Krykhtin and P. M. Lavrov, Phys. Lett. B 685, 208 (2010) [arXiv:0912.0611 [hep-th]]. I. L. Buchbinder and V. A. Krykhtin, Mod. Phys. Lett. A 25, 1667 (2010) [arXiv:1003.0185 [hep-th]].
    • [28] M. Porrati, R. Rahman and A. Sagnotti, Nucl. Phys. B 846, 250 (2011) [arXiv:1011.6411 [hep-th]].
    • [29] I. L. Buchbinder, T. V. Snegirev and Y. .M. Zinoviev, Nucl. Phys. B 864, 694 (2012) [arXiv:1204.2341 [hep-th]].
    • [30] M. Henneaux and R. Rahman, arXiv:1306.5750 [hep-th].
    • [31] D. Francia and A. Sagnotti, Class. Quant. Grav. 20, S473 (2003) [hep-th/0212185]. A. Sagnotti and M. Tsulaia, Nucl. Phys. B 682, 83 (2004) [hep-th/0311257]. A. Campoleoni and D. Francia, JHEP 1303, 168 (2013) [arXiv:1206.5877 [hepth]].
    • [32] I. L. Buchbinder, A. V. Galajinsky and V. A. Krykhtin, Nucl. Phys. B 779, 155 (2007) [hep-th/0702161]. I. L. Buchbinder and A. V. Galajinsky, JHEP 0811, 081 (2008) [arXiv:0810.2852 [hep-th]].
    • [33] Y. .M. Zinoviev, JHEP 1103, 082 (2011) [arXiv:1012.2706 [hep-th]].
    • [34] I. L. Buchbinder and A. Reshetnyak, Nucl. Phys. B 862, 270 (2012) [arXiv:1110.5044 [hep-th]]. A. Reshetnyak, “General Lagrangian Formulation for Higher Spin Fields with Arbitrary Index Symmetry. 2. Fermionic fields,” Nucl. Phys. B 869, 523 (2013) [arXiv:1211.1273 [hep-th]].
    • [35] F. Hussain, G. Thompson and P. D. Jarvis, Phys. Lett. B 216, 139 (1989).
    • [36] A. Pashnev and M. M. Tsulaia, Mod. Phys. Lett. A 12, 861 (1997) [hep-th/9703010].
    • [37] I. L. Buchbinder and V. A. Krykhtin, Nucl. Phys. B 727, 537 (2005) [hep-th/0505092]. I. L. Buchbinder, V. A. Krykhtin and P. M. Lavrov, Nucl. Phys. B 762, 344 (2007) [hep-th/0608005].
    • [38] M. Abramowitz and I. A. Stegun (Eds.). “Orthogonal polynomials.” Chapter 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York; Dover, pp. 774-775, 1972.
    • [39] G. Szeg¨o, §3.3 in “Orthogonal Polynomials” (American Mathematical Society Colloquium Publications, vol. 23.) New York, American Mathematical Society, pp. 44-45, 1939.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Collected from