Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Aryanpour, K.; Shukla, A.; Mazumdar, S. (2013)
Languages: English
Types: Preprint
Subjects: Condensed Matter - Strongly Correlated Electrons

Classified by OpenAIRE into

arxiv: Physics::Chemical Physics
We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene and circumcoronene, all possessing $D_{6h}$ point group symmetry versus ovalene with $D_{2h}$ symmetry, within the Pariser-Parr-Pople model of interacting $\pi$-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for $D_{6h}$ group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in $D_{2h}$ ovalene but not in those with $D_{6h}$ symmetry.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [2] S. Abe, M. Schreiber, W.-P. Su and J. Yu, Phys. Ref. B 45, 9432 (1992).
    • [3] M. Chandross, S. Mazumdar, S. Jeglinski, X. Wei, Z. V. Vardeny, E. W. Kwock and T. M. Miller, Phys. Rev. B 50, 14702 (1994).
    • [4] M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 82, 1959 (1999).
    • [5] J.-W. van der Horst, P. A. Bobbert, M. A. J. Michels, G. Brocks, and P. J. Kelly, Phys. Rev. Lett. 83, 4413 (1999).
    • [6] P. Puschnig and C. Ambrosch-Draxl, Phys. Rev. Lett. 89, 056405 (2002).
    • [7] A. Ruini, M. J. Caldas, G. Bussi and E. Molinari, Phys. Rev. Lett. 88, 206403 (2002).
    • [8] K. I. Igumenshchev, S. Tretiak and V. Y. Chernyak, J. Chem. Phys. 127, 11 (2007).
    • [9] T. Ando, J. Phys. Soc. Jpn. 66, 1066 (1997).
    • [10] C. D. Spataru, S. Ismail-Beigi, L. X. Benedict and S. G. Louie, Phys. Rev. Lett. 92, 077402 (2004).
    • [11] E. Chang, G. Bussi, G. A. Ruini and E. Molinari, Phys. Rev. Lett. 92, 196401 (2004).
    • [12] V. Perebeinos, J. Tersoff and P. Avouris, Phys. Rev. Lett. 92, 257402 (2004).
    • [13] H. Zhao and S. Mazumdar, Phys. Rev. Lett. 93, 157402 (2004).
    • [14] Primary Photoexcitations in Conjugated Polymers Molecular Exciton versus Semiconductor Band Model, edited by N. S. Sariciftci (World Scientific, Singapore, 1997).
    • [15] Ultrafast Dynamics and Laser Action of Organic Semiconductors, edited by Z. V. Vardeny (CRC Press, Boca Raton, FL, 2009).
    • [16] Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, edited by A. Jorio, G. Dresselhaus and M. S. Dresselhaus (Springer, Berlin, 2007).
    • [17] P. Tavan and K. Schulten, Phys. Rev. B 36, 4337 (1987).
    • [18] B. S. Hudson, B. E. Kohler and K. Schulten, Excited States 6, 1 (1982).
    • [19] B. E. Kohler, C. Spangler and C. Westerfield, J. Chem. Phys. 89, 5422 (1988).
    • [20] B. Lawrence, W. E. Torruellas, M. Cha, M. L. Sundheimer, G. I. Stegeman, J. Meth, S. Etemad and G. L. Baker, Phys. Rev. Lett. 73, 597 (1994).
    • [21] Z. G. Soos and S. Ramasesha, Phys. Rev. B 29, 5410 (1984).
    • [22] S. Ramasesha and Z. G. Soos, J. Chem. Phys. 80, 3278 (1984).
    • [23] P. C. M. McWilliams, G. W. Hayden and Z. G. Soos, Phys. Rev. B43, 9777 (1991).
    • [24] D. Baeriswyl, D. K. Campbell and S. Mazumdar, in Conjugated Conducting Polymers, edited by H. Kiess, (Springer Verlag, Berlin 1992), pp. 7 - 133.
    • [25] A. A. Ovchinnikov, Sov. Phys. JETP 30, 1160 (1970).
    • [26] R. Pariser and R. G. Parr, J. Chem. Phys. 21, 767-776 (1953).
    • [27] J. A. Pople, Trans. Faraday Soc. 49, 1375-1385 (1953).
    • [28] S. Ramasesha, S. K. Pati, Z. Shuai and J. L. Br´edas, Adv. Quant. Chem. 38, 121 (2000) and references therein.
    • [29] A. Race, W. Barford and R. J. Bursill, Phys. Rev. B 67, 245202 (2003) and references therein.
    • [30] G. Barcza, W. Barford, F. Gebhard and O. Legeza, Phys. Rev. B 87, 245116 (2013).
    • [31] Z. G. Soos, S. Ramasesha and D. S. Galv˜ao, Phys. Rev. Lett. 71, 1609 (1993).
    • [32] M. Chandross, Y. Shimoi and S. Mazumdar, Phys. Rev. B 59, 4822 (1999).
    • [33] K. Aryanpour, A. Roberts, A. Sandhu, R. Rathore, A. Shukla and S. Mazumdar, submitted.
    • [34] M. Chandross and S. Mazumdar, Phys. Rev. B 55, 1497 (1997).
    • [35] P. Sony and A. Shukla, Phys. Rev. B 75, 155208 (2007).
    • [36] Z.D. Wang, H. B. Zhao and S. Mazumdar, Phys. Rev. B 74, 195406 (2006).
    • [37] R. W. Boyd, Nonlinear Optics, (Academic Press, Inc., Boston, 1992).
    • [38] S. Mazumdar and F. Guo, Phys. Rev. B. 49, 10102 (1994).
    • [39] X. Yan, L. Binsong, X. Cui, Q. Wei, K. Tajima and L. Li, J. Phys. Chem. Lett. 2, 1119 (2011).
    • [40] S. Dayal, R. T. Clay and S. Mazumdar, Phys. Rev. B 85, 165141 (2012).
    • [41] A. D. Gu¨¸clu¨, P. Potasz and P. Hawrylak, Phys. Rev. B 82, 155445 (2010).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Electron correlation effect...

Cite this article

Collected from