OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Majic, Matt; Ru, Eric C. Le (2018)
Languages: English
Types: Preprint
Subjects: Physics - Classical Physics, Mathematical Physics
We derive new relationships expressing solid spherical harmonics as series of toroidal harmonics and vice versa. The expansions include regular and irregular spherical harmonics, ring and axial toroidal harmonics of even and odd parity about the plane of the torus. The expansion coefficients are given in terms of a recurrence relation. As an example application we apply one of the expansions to express the potential of a charged conducting torus on a basis of spherical harmonics.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 r a 2 1 r a 2
    • [4] Panayiotis Vafeas, Polycarpos K. Papadopoulos, Ping-Ping Ding, and Dominique Lesselier. Mathematical and numerical analysis of low-frequency scattering from a PEC ring torus in a conductive medium. Applied Mathematical Modelling, 40(13- 14):6477{6500, 2016. ISSN 0307904X. doi:10.1016/j.apm.2016.01.053. URL pii/S0307904X1630049X.
    • [5] B. P. Kondratyev, A. S. Dubrovskii, and N. G. Trubitsina. Potential in the Clearance of torus: Development on spherical functions. Technical Physics, 57(12):1613{1617, 2012. ISSN 1063-7842. doi:10.1134/S1063784212120134. URL http: //
    • [6] Marcello Cavallaro Jr, Mohamed A. Gharbi, Daniel A. Beller, Simon Copar, Zheng Shi, Randall D. Kamien, Shu Yang, Tobias Baumgart, and Kathleen J. Stebe. Ring around the colloid. Soft Matter, 9(38):9099, 2013. ISSN 1744-683X. doi:10.1039/c3sm51167g. URL
    • [7] Mark Andrews. Alternative separation of Laplace's equation in toroidal coordinates and its application to electrostatics. Journal of Electrostatics, 64(10):664{672, 2006. ISSN 03043886. doi:10.1016/j.elstat.2005.11.005.
    • [8] Philip M. Morse and Herman Feshbach. Methods of Theoretical Physics [Part 1 Chaps 1-8] 1953.pdf, 1953.
    • [9] Howard S. Cohl and Joel E. Tohline. A Compact Cylindrical Green's Function Expansion for the Solution of Potential Problems. The Astrophysical Journal, 527(1):86{101, 1999. ISSN 0004-637X. doi:10.1086/308062. URL http://stacks.
    • [10] Sameir M Ali Hamed. Response to 'Comments on 'Exact eld expressions for circular loop antennas using spherical functions expansion". IEEE Transactions on Antennas and Propagation, 62(8):4434{4435, 2014. ISSN 0018926X. doi: 10.1109/TAP.2014.2329002.
    • [11] NN Lebedev. Special functions and their applications. revised english edition. Translated and edited by Richard A. Silverman, 1965.
    • [12] Georg Jansen. Transformation properties of spheroidal multipole moments and potentials. Journal of Physics A: Mathematical and General, 33(7):1375, 2000.
    • [13] J Boersma. Some electrical problems for a torus. Philips Journal of Research, 38(3):79{137, 1983.
    • [14] B. P. Kondrat'ev, A. S. Dubrovskii, N. G. Trubitsyna, and E. Sh. Mukhametshina. Laplace series expansion of the potential of a homogeneous circular torus. Technical Physics, 54(2):176{181, 2009. ISSN 1063-7842. doi:10.1134/S1063784209020042. URL
    • [15] A Rotenberg. The calculation of toroidal harmonics. Mathematics of Computation, pages 274{276, 1960.
    • [16] J. Segura and A. Gil. Evaluation of toroidal harmonics. Computer Physics Communications, 124(1):104{122, 2000. ISSN 00104655. doi:10.1016/S0010-4655(99)00428-2.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok