LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Schlaufman, Kevin C.; Winn, Joshua N. (2016)
Languages: English
Types: Preprint
Subjects: Astrophysics - Solar and Stellar Astrophysics, Astrophysics - Earth and Planetary Astrophysics

Classified by OpenAIRE into

arxiv: Astrophysics::Earth and Planetary Astrophysics, Astrophysics::Solar and Stellar Astrophysics
The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. It is widely believed that these planets formed near the water-ice line of the protoplanetary disk, and subsequently migrated into much smaller orbits. Most of the proposed migration mechanisms can be classified either as disk-driven migration, or as excitation of a very high eccentricity followed by tidal circularization. In the latter scenario, the giant planet that is destined to become a hot Jupiter spends billions of years on a highly-eccentric orbit, with apastron near the water-ice line. Eventually, tidal dissipation at periastron shrinks and circularizes the orbit. If this is correct, then it should be especially rare for hot Jupiters to be accompanied by another giant planet interior to the water-ice line. Using the current sample of giant planets discovered with the Doppler technique, we find that hot Jupiters with P_orb < 10 days are no more or less likely to have exterior Jupiter-mass companions than longer-period giant planets with P_orb >= 10 days. This result holds for exterior companions both inside and outside of the approximate location of the water-ice line. These results are difficult to reconcile with the high-eccentricity migration scenario for hot Jupiter formation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bate, M. R., Lodato, G., & Pringle, J. E. 2010, MNRAS, 401, 1505
    • Batygin, K. 2012, Nature, 491, 418
    • Batygin, K., Bodenheimer, P. H., & Laughlin, G. P. 2015, arXiv:1511.09157
    • Bodenheimer, P., Hubickyj, O., & Lissauer, J. J. 2000, Icarus, 143, 2
    • Boley, A. C., Granados Contreras, A. P., & Gladman, B. 2016, ApJL, 817, L17
    • Bryan, M. L., Knutson, H. A., Howard, A. W., et al. 2016, arXiv:1601.07595
    • Cumming, A., Butler, R. P., Marcy, G. W., et al. 2008, PASP, 120, 531
    • Cumming, A., Marcy, G. W., & Butler, R. P. 1999, ApJ, 526, 890
    • Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, ApJ, 686, 580
    • Dawson, R. I., & Murray-Clay, R. A. 2013, ApJL, 767, L24
    • Dawson, R. I., Murray-Clay, R. A., & Johnson, J. A. 2015, ApJ, 798, 66
    • Dong, S., Katz, B., & Socrates, A. 2014, ApJL, 781, L5
    • Guillochon, J., Ramirez-Ruiz, E., & Lin, D. 2011, ApJ, 732, 74
    • Fabrycky, D., & Tremaine, S. 2007, ApJ, 669, 1298
    • Fielding, D. B., McKee, C. F., Socrates, A., Cunningham, A. J., & Klein, R. I. 2015, MNRAS, 450, 3306
    • Foucart, F., & Lai, D. 2011, MNRAS, 412, 2799
    • Fressin, F., Torres, G., Charbonneau, D., et al. 2013, ApJ, 766, 81
    • Han, E., Wang, S. X., Wright, J. T., et al. 2014, PASP, 126, 827
    • H g, E., Fabricius, C., Makarov, V. V., et al. 2000, A&A, 355, L27
    • Holman, M., Touma, J., & Tremaine, S. 1997, Nature, 386, 254
    • Howard, A. W., Marcy, G. W., Bryson, S. T., et al. 2012, ApJS, 201, 15
    • Ida, S., & Lin, D. N. C. 2004, ApJ, 604, 388
    • Innanen, K. A., Zheng, J. Q., Mikkola, S., & Valtonen, M. J. 1997, AJ, 113, 1915
    • Juric, M., & Tremaine, S. 2008, ApJ, 686, 603
    • Kiseleva, L. G., Eggleton, P. P., & Mikkola, S. 1998, MNRAS, 300, 292
    • Knutson, H. A., Fulton, B. J., Montet, B. T., et al. 2014, ApJ, 785, 126
    • Kozai, Y. 1962, AJ, 67, 591
    • Lai, D., Foucart, F., & Lin, D. N. C. 2011, MNRAS, 412, 2790
    • Latham, D. W., Rowe, J. F., Quinn, S. N., et al. 2011, ApJL, 732, L24
    • Lidov, M. L. 1962, Planet. Space Sci., 9, 719
    • Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Nature, 380, 606
    • Mazeh, T., Krymolowski, Y., & Rosenfeld, G. 1997, ApJL, 477, L103
    • Mulders, G. D., Ciesla, F. J., Min, M., & Pascucci, I. 2015, ApJ, 807, 9
    • Naoz, S., Farr, W. M., Lithwick, Y., Rasio, F. A., & Teyssandier, J. 2011, Nature, 473, 187
    • Naoz, S., Farr, W. M., & Rasio, F. A. 2012, ApJL, 754, L36
    • Ngo, H., Knutson, H. A., Hinkley, S., et al. 2015, ApJ, 800, 138
    • Petrovich, C. 2015, ApJ, 805, 75
    • Piskorz, D., Knutson, H. A., Ngo, H., et al. 2015, ApJ, 814, 148
    • Rasio, F. A., & Ford, E. B. 1996, Science, 274, 954
    • Rogers, T. M., Lin, D. N. C., & Lau, H. H. B. 2012, ApJL, 758, L6
    • Santerne, A., D az, R. F., Moutou, C., et al. 2012, A&A, 545, A76
    • Santerne, A., Moutou, C., Tsantaki, M., et al. 2016, A&A, 587, A64
    • Schlaufman, K. C. 2014, ApJ, 790, 91
    • Schlaufman, K. C., & Winn, J. N. 2013, ApJ, 772, 143
    • Ste en, J. H., Ragozzine, D., Fabrycky, D. C., et al. 2012, PNAS , 109, 7982
    • Storch, N. I., Anderson, K. R., & Lai, D. 2014, Science, 345, 1317
    • Thies, I., Kroupa, P., Goodwin, S. P., Stamatellos, D., & Whitworth, A. P. 2011, MNRAS, 417, 1817
    • Thommes, E. W., & Lissauer, J. J. 2003, ApJ, 597, 566
    • Tremaine, S. 1991, Icarus, 89, 85
    • Udry, S., Mayor, M., & Santos, N. C. 2003, A&A, 407, 369
    • van Leeuwen, F. 2007, Hipparcos, The New Reduction of the Raw Data (Astrophysics and Space Science Library, Vol. 350; Berlin: Springer)
    • Weidenschilling, S. J., & Marzari, F. 1996, Nature, 384, 619
    • Wenger, M., Ochsenbein, F., Egret, D., et al. 2000, A&AS, 143, 9
    • Wright, J. T. 2005, PASP, 117, 657
    • Wright, J. T., Fakhouri, O., Marcy, G. W., et al. 2011, PASP, 123, 412
    • Wright, J. T., Marcy, G. W., Fischer, D. A., et al. 2007, ApJ, 657, 533
    • Wright, J. T., Marcy, G. W., Howard, A. W., et al. 2012, ApJ, 753, 160
    • Wright, J. T., Upadhyay, S., Marcy, G. W., et al. 2009, ApJ, 693, 1084
    • Wu, Y., & Lithwick, Y. 2011, ApJ, 735, 109
    • Wu, Y., & Murray, N. 2003, ApJ, 589, 605
    • Youdin, A. N. 2011, ApJ, 742, 38
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok