LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Glenski, Maria; Ayton, Ellyn; Arendt, Dustin; Volkova, Svitlana (2017)
Languages: English
Types: Preprint
Subjects: Computer Science - Learning, Computer Science - Computation and Language, Computer Science - Social and Information Networks
This paper presents the results and conclusions of our participation in the Clickbait Challenge 2017 on automatic clickbait detection in social media. We first describe linguistically-infused neural network models and identify informative representations to predict the level of clickbaiting present in Twitter posts. Our models allow to answer the question not only whether a post is a clickbait or not, but to what extent it is a clickbait post e.g., not at all, slightly, considerably, or heavily clickbaity using a score ranging from 0 to 1. We evaluate the predictive power of models trained on varied text and image representations extracted from tweets. Our best performing model that relies on the tweet text and linguistic markers of biased language extracted from the tweet and the corresponding page yields mean squared error (MSE) of 0.04, mean absolute error (MAE) of 0.16 and R2 of 0.43 on the held-out test data. For the binary classification setup (clickbait vs. non-clickbait), our model achieved F1 score of 0.69. We have not found that image representations combined with text yield significant performance improvement yet. Nevertheless, this work is the first to present preliminary analysis of objects extracted using Google Tensorflow object detection API from images in clickbait vs. non-clickbait Twitter posts. Finally, we outline several steps to improve model performance as a part of the future work.

Share - Bookmark

Cite this article

Collected from