LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Duan, Runyao; Wang, Xin (2015)
Languages: English
Types: Preprint
Subjects: Computer Science - Information Theory, Quantum Physics

Classified by OpenAIRE into

arxiv: Computer Science::Information Theory
We study the activated quantum no-signalling-assisted zero-error classical capacity by first allowing the assistance from some noiseless forward communication channel and later paying back the cost of the helper. This activated communication model considers the additional forward noiseless channel as a catalyst for communication. First, we show that the one-shot activated capacity can be formulated as a semidefinite program and we derive a number of striking properties of this capacity. We further present a sufficient condition under which a noisy channel can be activated. Second, we show that one-bit noiseless classical communication is able to fully activate any classical-quantum channel to achieve its asymptotic capacity, or the semidefinite (or fractional) packing number. Third, we prove that the asymptotic activated capacity cannot exceed the original asymptotic capacity of any quantum channel. We also show that the asymptotic no-signalling-assisted zero-error capacity does not equal to the semidefinite packing number for quantum channels, which differs from the case of classical-quantum channels.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • † Electronic address: [1] C. E. Shannon, IRE Trans. Inf. Theory 2, 3 (1956). [2] L. Lova´sz, IEEE Trans. Inf. Theory 25, 1 (1979). [3] T. S. Cubitt, D. Leung, W. Matthews, A. Winter, Phys. Rev. Lett. 104, 230503 (2010). [4] D. Leung, L. Mancˇinska, W. Matthews, M. Ozols, A. Roy, Commun. Math. Phys. 311 (2012). [5] R. Duan, arXiv:0906.2526 [6] R. Duan, Y. Shi, Phys. Rev. Lett. 101, 020501 (2008). [7] T. S. Cubitt, J. Chen, A. W. Harrow, IEEE Trans. Inf. Theory 57, 12 (2011). [8] T. S. Cubitt, G. Smith, IEEE Trans. Inf. Theory 58, 3 (2012). [9] S. Beigi, Phys. Rev. A 82, 010303 (2010). [10] R. Duan, S. Severini, A. Winter, IEEE Trans. Inf. Theory 59, 2 (2013). [11] D. Beckman, D. Gottesman, M. A. Nielsen, J. Preskill, Phys. Rev. A 64, 052309 (2001). [12] T. Eggeling, D. Schlingemann, R. F. Werner, Europhys. Lett. 57, 6 (2002). [13] M. Piani, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. A 74, 012305 (2006). [14] O. Oreshkov, F. Costa, Cˇ . Brukner, Nature Comm. 3, 10 (2012). [15] T. S. Cubitt, D. Leung, W. Matthews, A. Winter, IEEE Trans. Inf. Theory 57, 8 (2011). [16] L. Vandenberghe, S. Boyd, SIAM Rev. 38, 1 (1996). [17] R. Duan, A. Winter, arXiv:1409.3426 [18] R. Duan, S. Severini, A. Winter, arXiv:1502.02987 [19] H. Barnum, M. A. Nielsen, and B. Schumacher, Phys. Rev. A 57, 4153 (1998). [20] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 2.1.
    • http://cvxr.com/cvx (2014). [21] Nathaniel Johnston, Alessandro Cosentino, and Vincent Russo, QETLAB: A MATLAB toolbox for
    • quantum entanglement, http://qetlab.com (2015). [22] A. Ac´ın, R. Duan, A. B. Sainz, and A. Winter, arXiv:1505.01265 [23] A. Winter and D. Yang, arXiv:1505.00907
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Collected from