LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Colonius, T.; d'Auria, F.; Brennen, C.E. (2000)
Publisher: American Institute of Physics
Types: Article
Subjects: Caltech Library Services

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
Bubbly cavitating flow generated by the normal oscillation of a wall bounding a semi-infinite domain of fluid is computed using a continuum two-phase flow model. Bubble dynamics are computed, on the microscale, using the Rayleigh-Plesset equation. A Lagrangian finite volume scheme and implicit adaptive time marching are employed to accurately resolve bubbly shock waves and other steep gradients in the flow. The one-dimensional, unsteady computations show that when the wall oscillation frequency is much smaller than the bubble natural frequency, the power radiated away from the wall is limited by an acoustic saturation effect (the radiated power becomes independent of the amplitude of vibration), which is similar to that found in a pure gas. That is, for large enough vibration amplitude, nonlinear steepening of the generated waves leads to shocking of the wave train, and the dissipation associated with the jump conditions across each shock limits the radiated power. In the model, damping of the bubble volume oscillations is restricted to a simple "effective" viscosity. For wall oscillation frequency less than the bubble natural frequency, the saturation amplitude of the radiated field is nearly independent of any specific damping mechanism. Finally, implications for noise radiation from cavitating flows are discussed.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok