LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pistone, Giovanni; Sempi, Carlo (1995)
Publisher: The Institute of Mathematical Statistics
Languages: English
Types: 0038
Subjects: 62A25, Nonparametric statistical manifolds, Orlicz spaces

Classified by OpenAIRE into

arxiv: Mathematics::General Topology, Mathematics::Functional Analysis
Let $\mathscr{M}_\mu$ be the set of all probability densities equivalent to a given reference probability measure $\mu$. This set is thought of as the maximal regular (i.e., with strictly positive densities) $\mu$-dominated statistical model. For each $f \in \mathscr{M}_\mu$ we define (1) a Banach space $L_f$ with unit ball $\mathscr{V}_f$ and (2) a mapping $s_f$ from a subset $\mathscr{U}_f$ of $\mathscr{M}_\mu$ onto $\mathscr{V}_f$, in such a way that the system $(s_f, \mathscr{U}_f, f \in \mathscr{M}_\mu)$ is an affine atlas on $\mathscr{M}_\mu$. Moreover each parametric exponential model dominated by $\mu$ is a finite-dimensional affine submanifold and each parametric statistical model dominated by $\mu$ with a suitable regularity is a submanifold. The global geometric framework given by the manifold structure adds some insight to the so-called geometric theory of statistical models. In particular, the present paper gives some of the developments connected with the Fisher information metrics (Rao) and the Hilbert bundle introduced by Amari.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok