Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Левыкин, Виктор Макарович; Чалая, Оксана Викторовна (2016)
Publisher: Private company "Technology Center"
Journal: Technology audit and production reserves
Languages: Russian
Types: Article
Subjects: знання-місткий бізнес-процес; інтелектуальний аналіз процесів; процесне управління, знание-емкий бизнес-процесс; интеллектуальный анализ процессов; процессное управление., knowledge-intensive business process; process mining; process control, УДК 004.891.3
Multivariate knowledge-intensive business processes that change at runtime on the basis of knowledge are considered. For more effective implementation of the process performers correct the course of its action with the help of their personal knowledge and experience. The dependencies that reflect the link between the execution context of the process actions are used. To improve the process control efficiency it is necessary to formalize the context-sensitive knowledge of artists and include them in the process model. Context states, as well as the sequence of process actions are recorded in the log of information system. This presents an opportunity to highlight the links between the context and the process based on log analysis. The method of selection of context-procedural dependencies of knowledge-intensive business process is proposed. This process involves the identification of repetitive sequences of events that reflect the process execution, as well as state of context artifacts and the relationships between artifacts that lead to the implementation of these actions. The method improves the efficiency of process control of knowledge-intensive business processes by supplementing the process mode by identifying dependencies.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Vom Brocke, J. Handbook on Business Process Management 1. Introduction, Methods, and Information Systems [Text] / J. vom Brocke, M. Rosemann. - Springer-Verlag Berlin Heidelberg, 2015. - 709 p. doi:10.1007/978-3-642-45100-3
    • 2. Weske, М. Business Process Management: Concepts, Languages, Architectures [Text] / M. Weske. - Ed. 2. - Springer-Verlag Berlin Heidelberg, 2012. - 403 p. doi:10.1007/978-3-642-28616-2
    • 3. Van der Aalst, W. M. P. Process Mining: Discovery, Conformance and Enhancement of Business Processes [Text] / W. M. P. Van der Aalst. - Springer Berlin Heidelberg, 2011. - 352 p. doi:10.1007/978-3-642-19345-3
    • 4. Gronau, N. Modeling and Analyzing knowledge intensive business processes with KMDL: Comprehensive insights into theory and practice (English) [Text] / N. Gronau. - Gito, 2012. - 522 p.
    • 5. Van der Aalst, W. M. P. Process Mining in the Large: A Tutorial [Text] / W. M. P. Van der Aalst // Business Intelligence. - Springer Science + Business Media, 2014. - P. 33-76. doi:10.1007/978-3-319-05461-2_2
    • 6. Easterby-Smith, M. Handbook of Organizational Learning and Knowledge Management [Text] / M. Easterby-Smith, M. A. Lyles. - John Wiley & Sons, 2011. - 711 p. doi:10.1002/ 9781119207245
    • 7. Nonaka, I. Perspective - Tacit Knowledge and Knowledge Conversion: Controversy and Advancement in Organizational Knowledge Creation Theory [Text] / I. Nonaka, G. von Krogh // Organization Science. - 2009. - Vol. 20, № 3. - P. 635-652. doi:10.1287/orsc.1080.0412
    • 8. Cohn, D. Business artifacts: A data-centric approach to modeling business operations and processes [Text] / D. Cohn, R. Hull // Bulletin of the IEEE Computer Society Technical Committee on Data Engineering. - 2009. - Vol. 32, № 3. - P. 1-7.
    • 9. Bhattacharya, K. Artifact-centered operational modeling: Lessons from customer engagements [Text] / K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, F. Y. Wu // IBM Systems Journal. - 2007. - Vol. 46, № 4. - P. 703-721. doi:10.1147/ sj.464.0703
    • 10. G rg, C. Visual Representations [Text] / C. G rg, M. Pohl, E. Qeli, K. Xu // Human-Centered Visualization Environments. - Springer Science + Business Media. - P. 163-230. doi:10.1007/978-3-540-71949-6_4
    • 11. G nther, C. W. OpenXES. Developer Guide [Text] / C. W. G nther, E. Verbeek. - Technische Universiteit Eindhoven University of Technology, 2014. - 38 p.
    • 12. Kalynychenko, O. Implementation of search mechanism for implicit dependences in process mining [Electronic resource] / O. Kalynychenko, S. Chalyi, Y. Bodyanskiy, V. Golian, N. Golian // 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS). - Institute of Electrical and Electronics Engineers (IEEE), 2013. - Available at: \www/URL: https://doi.org/10.1109/ idaacs.2013.6662657
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article